期刊文献+
共找到3,082篇文章
< 1 2 155 >
每页显示 20 50 100
Small-time scale network traffic prediction based on a local support vector machine regression model 被引量:10
1
作者 孟庆芳 陈月辉 彭玉华 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第6期2194-2199,共6页
In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the... In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements. 展开更多
关键词 network traffic small-time scale nonlinear time series analysis support vector machine regression model
下载PDF
FAULT DIAGNOSIS APPROACH BASED ON HIDDEN MARKOV MODEL AND SUPPORT VECTOR MACHINE 被引量:4
2
作者 LIU Guanjun LIU Xinmin QIU Jing HU Niaoqing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期92-95,共4页
Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measur... Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measure well and is good at dealing with continuous dynamic signals. SVM expresses inter-class difference effectively and has perfect classify ability. This approach is built on the merit of HMM and SVM. Then, the experiment is made in the transmission system of a helicopter. With the features extracted from vibration signals in gearbox, this HMM-SVM based diagnostic approach is trained and used to monitor and diagnose the gearbox's faults. The result shows that this method is better than HMM-based and SVM-based diagnosing methods in higher diagnostic accuracy with small training samples. 展开更多
关键词 Hidden Markov model support vector machine Fault diagnosis
下载PDF
Support vector machine-based multi-model predictive control 被引量:3
3
作者 Zhejing BAO Youxian SUN 《控制理论与应用(英文版)》 EI 2008年第3期305-310,共6页
In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression ... In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression and the support vector machine network-based model predictive control (SVMN-MPC) algorithm corresponding to each environment is developed, and then a multi-class SVM model is established to recognize multiple operating conditions. As for control, the current environment is identified by the multi-class SVM model and then the corresponding SVMN-MPC controller is activated at each sampling instant. The proposed modeling, switching and controller design is demonstrated in simulation results. 展开更多
关键词 Multi-model predictive control support vector machine network Multi-class support vector machine Multi-model switching
下载PDF
Nonlinear model predictive control based on support vector machine and genetic algorithm 被引量:5
4
作者 冯凯 卢建刚 陈金水 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2048-2052,共5页
This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used ... This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection. 展开更多
关键词 support vector machine Genetic algorithm Nonlinear model predictive control Neural network modeling
下载PDF
SOFT SENSING MODEL BASED ON SUPPORT VECTOR MACHINE AND ITS APPLICATION 被引量:3
5
作者 YanWeiwu ShaoHuihe WangXiaofan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第1期55-58,共4页
Soft sensor is widely used in industrial process control. It plays animportant role to improve the quality of product and assure safety in production. The core of softsensor is to construct soft sensing model. A new s... Soft sensor is widely used in industrial process control. It plays animportant role to improve the quality of product and assure safety in production. The core of softsensor is to construct soft sensing model. A new soft sensing modeling method based on supportvector machine (SVM) is proposed. SVM is a new machine learning method based on statistical learningtheory and is powerful for the problem characterized by small sample, nonlinearity, high dimensionand local minima. The proposed methods are applied to the estimation of frozen point of light dieseloil in distillation column. The estimated outputs of soft sensing model based on SVM match the realvalues of frozen point and follow varying trend of frozen point very well. Experiment results showthat SVM provides a new effective method for soft sensing modeling and has promising application inindustrial process applications. 展开更多
关键词 Soft sensor Soft sensing modelING support vector machine
下载PDF
High-rise building fire pre-warning model based on the support vector regression 被引量:1
6
作者 张立宁 张奇 安晶 《Journal of Beijing Institute of Technology》 EI CAS 2015年第3期285-290,共6页
Aiming at reducing the deficiency of the traditional fire pre-warning algorithms and the intelligent fire pre-warning algorithms such as artificial neural network,and then to improve the accuracy of fire prewarning fo... Aiming at reducing the deficiency of the traditional fire pre-warning algorithms and the intelligent fire pre-warning algorithms such as artificial neural network,and then to improve the accuracy of fire prewarning for high-rise buildings,a composite fire pre-warning controller is designed according to the characteristic( nonlinear,less historical data,many influence factors),also a high-rise building fire pre-warning model is set up based on the support vector regression( SV R). Then the wood fire standard history data is applied to make empirical analysis. The research results can provide a reliable decision support framework for high-rise building fire pre-warning. 展开更多
关键词 high-rise buildings fire composite fire pre-warning systemdesign the support vector regression pre-warning model
下载PDF
A novel excitation controller using support vector machines and approximate models 被引量:1
7
作者 Xiaofang YUAN Yaonan WANG Shutao LI 《控制理论与应用(英文版)》 EI 2008年第3期239-245,共7页
This paper proposes a novel excitation controller using support vector machines (SVM) and approximate models. The nonlinear control law is derived directly based on an input-output approximation method via Taylor ex... This paper proposes a novel excitation controller using support vector machines (SVM) and approximate models. The nonlinear control law is derived directly based on an input-output approximation method via Taylor expansion, which not only avoids complex control development and intensive computation, but also avoids online learning or adjustment. Only a general SVM modelling technique is involved in both model identification and controller implementation. The robustness of the stability is rigorously established using the Lyapunov method. Several simulations demonstrate the effectiveness of the proposed excitation controller. 展开更多
关键词 support vector machines Nonlinear control Approximate model Neural networks IDENTIFICATION
下载PDF
Support Vector Machine-Based Nonlinear System Modeling and Control 被引量:1
8
作者 张浩然 韩正之 +1 位作者 冯瑞 于志强 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第3期53-58,共6页
This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework base... This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework based on SVM. At last a numerical experiment is taken to demonstrate the proposed approach's correctness and effectiveness. 展开更多
关键词 support vector machine Statistical learning theory Nonlinear systems modeling and control.
下载PDF
TYRE DYNAMICS MODELLING OF VEHICLE BASED ON SUPPORT VECTOR MACHINES 被引量:2
9
作者 ZHENG Shuibo TANG Houjun +1 位作者 HAN Zhengzhi ZHANG Yong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期558-565,共8页
Various methods of tyre modelling are implemented from pure theoretical to empirical or semi-empirical models based on experimental results. A new way of representing tyre data obtained from measurements is presented ... Various methods of tyre modelling are implemented from pure theoretical to empirical or semi-empirical models based on experimental results. A new way of representing tyre data obtained from measurements is presented via support vector machines (SVMs). The feasibility of applying SVMs to steady-state tyre modelling is investigated by comparison with three-layer backpropagation (BP) neural network at pure slip and combined slip. The results indicate SVMs outperform the BP neural network in modelling the tyre characteristics with better generalization performance. The SVMsqyre is implemented in 8-DOF vehicle model for vehicle dynamics simulation by means of the PAC 2002 Magic Formula as reference. The SVMs-tyre can be a competitive and accurate method to model a tyre for vehicle dynamics simuLation. 展开更多
关键词 support vector machines(SVMs) Backpropagation(BP) neural network Tyre model Regression estimation Magic formula
下载PDF
Inverse Model Control for a Quad-rotor Aircraft Using TS-fuzzy Support Vector Regression
10
作者 Zhiyu Li Hanxin Chen +1 位作者 Congqing Wang Kaijia Xue 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2017年第6期73-79,共7页
An inverse model control based on TS-fuzzy support vector regression( TS-fuzzy SVR) for a quadrotor aircraft is developed. The TS-kernel is the product of linear combination of input and a cluster of output correspond... An inverse model control based on TS-fuzzy support vector regression( TS-fuzzy SVR) for a quadrotor aircraft is developed. The TS-kernel is the product of linear combination of input and a cluster of output corresponding to a cluster of TS-type fuzzy rules. The output of TS-fuzzy SVR is a linear weighted sum of the TSkernels. The dynamical model of the quad-rotor aircraft is derived. A new control scheme combined with TSfuzzy SVR inverse model control and PID control is presented so that the TS-fuzzy SVR inverse model control enhances capabilities of disturbance rejection and the robustness while the PID control enhances fast responsiveness and reliability of the system. Simulation results show the capabilities of the developed control for the attitude system of quad-rotor aircraft. 展开更多
关键词 support vector regression TS-fuzzy SVR INVERSE model CONTROL quad-rotor AIRCRAFT ATTITUDE CONTROL
下载PDF
The Application of Support Vector Machines to Gas Turbine Performance Diagnosis 被引量:9
11
作者 郝英 孙健国 +1 位作者 杨国庆 白杰 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第1期15-19,共5页
SVMs(support vector machines) is a new artificial intelligence methodology derived from Vapnik's statistical learning theory, which has better generalization than artificial neural network. A Csupport vector classi... SVMs(support vector machines) is a new artificial intelligence methodology derived from Vapnik's statistical learning theory, which has better generalization than artificial neural network. A Csupport vector classifiers Based Fault Diagnostic Model (CBFDM) which gives the 3 most possible fault causes is constructed in this paper. Five fold cross validation is chosen as the method of model selection for CBFDM. The simulated data are generated from PW4000-94 engine influence coefficient matrix at cruise, and the results show that the diagnostic accuracy of CBFDM is over 93 % even when the standard deviation of noise is 3 times larger than the normal. This model can also be used for other diagnostic problems. 展开更多
关键词 aerospace propulsion system performance diagnosis support vector machines model selection
下载PDF
Support Vector Regression for Bus Travel Time Prediction Using Wavelet Transform 被引量:2
12
作者 Yang Liu Yanjie Ji +1 位作者 Keyu Chen Xinyi Qi 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第3期26-34,共9页
In order to accurately predict bus travel time, a hybrid model based on combining wavelet transform technique with support vector regression(WT-SVR) model is employed. In this model, wavelet decomposition is used to e... In order to accurately predict bus travel time, a hybrid model based on combining wavelet transform technique with support vector regression(WT-SVR) model is employed. In this model, wavelet decomposition is used to extract important information of data at different levels and enhances the forecasting ability of the model. After wavelet transform different components are forecasted by their corresponding SVR predictors. The final prediction result is obtained by the summation of the predicted results for each component. The proposed hybrid model is examined by the data of bus route No.550 in Nanjing, China. The performance of WT-SVR model is evaluated by mean absolute error(MAE), mean absolute percent error(MAPE) and relative mean square error(RMSE), and also compared to regular SVR and ANN models. The results show that the prediction method based on wavelet transform and SVR has better tracking ability and dynamic behavior than regular SVR and ANN models. The forecasting performance is remarkably improved to obtain within 6% MAPE for testing section Ⅰ and 8% MAPE for testing section Ⅱ, which proves that the suggested approach is feasible and applicable in bus travel time prediction. 展开更多
关键词 intelligent TRANSPORTATION BUS TRAVEL time prediction WAVELET TRANSFORM support vector regression hybrid model
下载PDF
Generalized Predictive Control with Online Least Squares Support Vector Machines 被引量:41
13
作者 LI Li-Juan SU Hong-Ye CHU Jian 《自动化学报》 EI CSCD 北大核心 2007年第11期1182-1188,共7页
这份报纸基于能有效地处理非线性的系统的联机最少的广场支持向量机器(LS-SVM ) 建议一个实际概括预兆的控制(GPC ) 算法。在每个采样时期,算法递归地由增加新数据对并且在实时性质上从考虑删除最不重要的修改模型。删除的数据对被 lag... 这份报纸基于能有效地处理非线性的系统的联机最少的广场支持向量机器(LS-SVM ) 建议一个实际概括预兆的控制(GPC ) 算法。在每个采样时期,算法递归地由增加新数据对并且在实时性质上从考虑删除最不重要的修改模型。删除的数据对被 lagrange 的绝对值从最后一个采样时期更多样地决定。当增加新数据对并且删除存在的时,纸给模型参数的递归的算法分别地,一个大矩阵的倒置被避免,存储器能被算法完全控制。非线性的 LS-SVM 模型在每个采样时期在 GPC 算法被使用。抵销过程的 pH 上的概括预兆的控制的实验显示出建议算法的有效性和实物。 展开更多
关键词 普遍预测控制 支持向量机 联机模型 pH补偿过程 模糊控制
下载PDF
Endpoint Prediction of EAF Based on Multiple Support Vector Machines 被引量:12
14
作者 YUAN Ping MAO Zhi-zhong WANG Fu-li 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第2期20-24,29,共6页
The endpoint parameters are very important to the process of EAF steel-making, but their on-line measurement is difficult. The soft sensor technology is widely used for the prediction of endpoint parameters. Based on ... The endpoint parameters are very important to the process of EAF steel-making, but their on-line measurement is difficult. The soft sensor technology is widely used for the prediction of endpoint parameters. Based on the analysis of the smelting process of EAF and the advantages of support vector machines, a soft sensor model for predicting the endpoint parameters was built using multiple support vector machines (MSVM). In this model, the input space was divided by subtractive clustering and a sub-model based on LS-SVM was built in each sub-space. To decrease the correlation among the sub-models and to improve the accuracy and robustness of the model, the sub- models were combined by Principal Components Regression. The accuracy of the soft sensor model is perfectly improved. The simulation result demonstrates the practicability and efficiency of the MSVM model for the endpoint prediction of EAF. 展开更多
关键词 endpoint prediction EAF soft sensor model multiple support vector machine (MSVM) principal components regression (PCR)
下载PDF
SENSITIVITY ANALYSIS FOR ROLLING PROCESS BASED ON SUPPORT VECTOR MACHINE 被引量:3
15
作者 HuangYanwei WuTihua +1 位作者 ZhaoJingyi WangYiqun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第2期271-274,共4页
A method for the calculation of the sensitivity factors of the rollingprocess has been obtained by differentiating the roll force model based on support vector machine.It can eliminate the algebraic loop of the analyt... A method for the calculation of the sensitivity factors of the rollingprocess has been obtained by differentiating the roll force model based on support vector machine.It can eliminate the algebraic loop of the analytical model of the rolling process. The simulationsin the first stand of five stand cold tandem rolling mill indicate that the calculation forsensitivities by this proposed method can obtain a good accuracy, and an appropriate adjustment onthe control variables determined directly by the sensitivity has an excellent compensation accuracy.Moreover, the roll gap has larger effect on the exit thickness than both front tension and backtension, and it is more efficient to select the roll gap as the control variable of the thicknesscontrol system in the first stand. 展开更多
关键词 support vector machine(SVM) Cold tandem rolling mill modelING Sensitivity
下载PDF
Casing life prediction using Borda and support vector machine methods 被引量:4
16
作者 Xu Zhiqian Yan Xiangzhen Yang Xiujuan 《Petroleum Science》 SCIE CAS CSCD 2010年第3期416-421,共6页
Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts ... Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts for failure modes are obtained with the Borda method. The risk indexes of failure modes are derived from the Borda matrix. Based on the support vector machine (SVM), a casing life prediction model is established. In the prediction model, eight risk indexes are defined as input vectors and casing life is defined as the output vector. The ideal model parameters are determined with the training set from 19 wells with casing failure. The casing life prediction software is developed with the SVM model as a predictor. The residual life of 60 wells with casing failure is predicted with the software, and then compared with the actual casing life. The comparison results show that the casing life prediction software with the SVM model has high accuracy. 展开更多
关键词 support vector machine method Borda method life prediction model failure modes RISKFACTORS
下载PDF
Forecast Urban Air Pollution in Mexico City by Using Support Vector Machines: A Kernel Performance Approach 被引量:1
17
作者 Artemio Sotomayor-Olmedo Marco A. Aceves-Fernández +3 位作者 Efrén Gorrostieta-Hurtado Carlos Pedraza-Ortega Juan M. Ramos-Arreguín J. Emilio Vargas-Soto 《International Journal of Intelligence Science》 2013年第3期126-135,共10页
The development of forecasting models for pollution particles shows a nonlinear dynamic behavior;hence, implementation is a non-trivial process. In the literature, there have been multiple models of particulate pollut... The development of forecasting models for pollution particles shows a nonlinear dynamic behavior;hence, implementation is a non-trivial process. In the literature, there have been multiple models of particulate pollutants, which use softcomputing techniques and machine learning such as: multilayer perceptrons, neural networks, support vector machines, kernel algorithms, and so on. This paper presents a prediction pollution model using support vector machines and kernel functions, which are: Gaussian, Polynomial and Spline. Finally, the prediction results of ozone (O3), particulate matter (PM10) and nitrogen dioxide (NO2) at Mexico City are presented as a case study using these techniques. 展开更多
关键词 PREDICTIVE models AIRBORNE POLLUTION support vector Machines KERNEL Functions
下载PDF
An Eigen-Normal Approach for 3D Mesh Watermarking Using Support Vector Machines
18
作者 Rakhi Motwani Mukesh Motwani +1 位作者 Frederick Harris Sergiu Dascalu 《Journal of Electronic Science and Technology》 CAS 2010年第3期237-243,共7页
The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been ex... The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been explored in the 3D watermarking domain. The proposed approach utilizes SVM as a binary classifier for the selection of vertices for watermark embedding. The SVM is trained with feature vectors derived from the angular difference between the eigen normal and surface normals of a 1-ring neighborhood of vertices taken from normalized 3D mesh models. The SVM learns to classify vertices as appropriate or inappropriate candidates for modification in order to accommodate the watermark. Experimental results verify that the proposed algorithm is imperceptible and robust against attacks such as mesh smoothing, cropping and noise addition. 展开更多
关键词 3D mesh models support vector machine watermarking.
下载PDF
Fuzzy rule-based support vector regression system
19
作者 Ling WANG Zhichun MU Hui GUO 《控制理论与应用(英文版)》 EI 2005年第3期230-234,共5页
In this paper, we design a fuzzy rule-based support vector regression system. The proposed system utilizes the advantages of fuzzy model and support vector regression to extract support vectors to generate fuzzy if-th... In this paper, we design a fuzzy rule-based support vector regression system. The proposed system utilizes the advantages of fuzzy model and support vector regression to extract support vectors to generate fuzzy if-then rules from the training data set. Based on the first-order hnear Tagaki-Sugeno (TS) model, the structure of rules is identified by the support vector regression and then the consequent parameters of rules are tuned by the global least squares method. Our model is applied to the real world regression task. The simulation results gives promising performances in terms of a set of fuzzy hales, which can be easily interpreted by humans. 展开更多
关键词 TS fuzzy model support vector machine support vector regression
下载PDF
Analysis of Ammonia Nitrogen Content in Water Based on Weighted Least Squares Support Vector Machine (WLSSVM) Algorithm 被引量:2
20
作者 Jinwu Ju Lanying Wang 《Journal of Software Engineering and Applications》 2016年第2期45-51,共7页
Determination of ammonia nitrogen content in water is the basic item of the environmental water pollution, and is the key index to evaluate the water quality. This article designs a water quality monitoring system bas... Determination of ammonia nitrogen content in water is the basic item of the environmental water pollution, and is the key index to evaluate the water quality. This article designs a water quality monitoring system based on the on-line automatic ammonia nitrogen monitoring system, and establishes a forecasting model based on the weighted least squares support vector machine algorithm. The weighted least squares support vector machine algorithm increases the weight parameter setting, improves the speed and accuracy of prediction learning, and improves the robustness. In this article, a comparison between neural network model and weighted least square support vector machine model is made, which shows that the weighted least squares support vector machine model has better prediction accuracy. 展开更多
关键词 support vector Machine Water Quality Ammonia Nitrogen Forecasting model
下载PDF
上一页 1 2 155 下一页 到第
使用帮助 返回顶部