This paper discusses by energy theorem the methodof approximate computation for the lowest eigenfrequencies of rechmguhir plates,on which there are symmetrical concentrated masses,supported at corner points,In the cas...This paper discusses by energy theorem the methodof approximate computation for the lowest eigenfrequencies of rechmguhir plates,on which there are symmetrical concentrated masses,supported at corner points,In the case of seseral concentrated masses,by using the prineiple of superposition we mayfiml the reduneed coefficients of masses comveniently.llence we can louain the lowest eigenfrequencies of thin plates.In the paper a good mamy mmerical caleuhting eximples are inustrated展开更多
This paper studies transverse vibration of rectangular plates with two opposite edges simply supperted other two edges arbitrarily supported and free edges elaslically supported at points,A highly accurate solution is...This paper studies transverse vibration of rectangular plates with two opposite edges simply supperted other two edges arbitrarily supported and free edges elaslically supported at points,A highly accurate solution is presented for calculating inherent frequencies and mode shape of rectangular platen elaslically supported at points. The number and location of these points on free edges may be completely arbitrary. This paper uses impulse function to represent reaction and moment at points. Fourter series is used to expand the impulse function along the edges. Characteristic equations satisfying all boundary conditions are given.Inherent frequencies and mode shape with any accutacy can be gained.展开更多
This paper presents a new method for solving the vibration of arbitrarily shaped membranes with ela.stical supports at points. The reaction forces of elastical supports at points are regarded as unknown external force...This paper presents a new method for solving the vibration of arbitrarily shaped membranes with ela.stical supports at points. The reaction forces of elastical supports at points are regarded as unknown external forces acting on the membranes. The exact solution of the equation of motion is given which includes terms representing the unknown reaction forces. The frequency equation is derived by the use of the linear relationship of the displacements with the reaction forces of elastical supports at points. Finally the calculating formulae of the frequency equation of circular membranes are analytically performed as examples and the inherent frequencies of circular membranes with symmetric elastical supports at two points are numerically calculated.展开更多
Facing the lateral vibration problem of a machine rotor as a beam on elastic supports in bending,the authors deal with the free vibration of elastically restrained Bernoulli-Euler beams carrying a finite number of con...Facing the lateral vibration problem of a machine rotor as a beam on elastic supports in bending,the authors deal with the free vibration of elastically restrained Bernoulli-Euler beams carrying a finite number of concentrated elements along their length.Based on Rayleigh’s quotient,an iterative strategy is developed to find the approximated torsional stiffness coefficients,which allows the reconciliation between the theoretical model results and the experimental ones,obtained through impact tests.The mentioned algorithm treats the vibration of continuous beams under a determined set of boundary and continuity conditions, including different torsional stiffness coefficients and the effect of attached concentrated masses and rotational inertias, not only in the energetic terms of the Rayleigh’s quotient but also on the mode shapes,considering the shape functions defined in branches.Several loading cases are examined and examples are given to illustrate the validity of the model and accuracy of the obtained natural frequencies.展开更多
文摘This paper discusses by energy theorem the methodof approximate computation for the lowest eigenfrequencies of rechmguhir plates,on which there are symmetrical concentrated masses,supported at corner points,In the case of seseral concentrated masses,by using the prineiple of superposition we mayfiml the reduneed coefficients of masses comveniently.llence we can louain the lowest eigenfrequencies of thin plates.In the paper a good mamy mmerical caleuhting eximples are inustrated
文摘This paper studies transverse vibration of rectangular plates with two opposite edges simply supperted other two edges arbitrarily supported and free edges elaslically supported at points,A highly accurate solution is presented for calculating inherent frequencies and mode shape of rectangular platen elaslically supported at points. The number and location of these points on free edges may be completely arbitrary. This paper uses impulse function to represent reaction and moment at points. Fourter series is used to expand the impulse function along the edges. Characteristic equations satisfying all boundary conditions are given.Inherent frequencies and mode shape with any accutacy can be gained.
文摘This paper presents a new method for solving the vibration of arbitrarily shaped membranes with ela.stical supports at points. The reaction forces of elastical supports at points are regarded as unknown external forces acting on the membranes. The exact solution of the equation of motion is given which includes terms representing the unknown reaction forces. The frequency equation is derived by the use of the linear relationship of the displacements with the reaction forces of elastical supports at points. Finally the calculating formulae of the frequency equation of circular membranes are analytically performed as examples and the inherent frequencies of circular membranes with symmetric elastical supports at two points are numerically calculated.
基金supported by the Portuguese Foundation for Science and Tech-nology(FCT),under the project POCI 2010 and the PhD grant SFRH/BD/44696/2008
文摘Facing the lateral vibration problem of a machine rotor as a beam on elastic supports in bending,the authors deal with the free vibration of elastically restrained Bernoulli-Euler beams carrying a finite number of concentrated elements along their length.Based on Rayleigh’s quotient,an iterative strategy is developed to find the approximated torsional stiffness coefficients,which allows the reconciliation between the theoretical model results and the experimental ones,obtained through impact tests.The mentioned algorithm treats the vibration of continuous beams under a determined set of boundary and continuity conditions, including different torsional stiffness coefficients and the effect of attached concentrated masses and rotational inertias, not only in the energetic terms of the Rayleigh’s quotient but also on the mode shapes,considering the shape functions defined in branches.Several loading cases are examined and examples are given to illustrate the validity of the model and accuracy of the obtained natural frequencies.