The technique of supported liquid membranes was used to achieve the facilitated transport of Cr(III) ions, using tow amphiphilic carriers, the methyl cholate and resorcinarene. For prepared SLMs, toluene as organic ph...The technique of supported liquid membranes was used to achieve the facilitated transport of Cr(III) ions, using tow amphiphilic carriers, the methyl cholate and resorcinarene. For prepared SLMs, toluene as organic phase and film of polyvinylidene difluoride, as hydrophobic polymer support with 100 μm in thickness and 0.45 μm as the diameter of the pores. The macroscopic parameters (P and J0) on the transport of these ions were determined for different medium temperatures. For these different environments, the prepared SLMs were highly permeable and a clear evolution of these parameters was observed. The parameter J0 depended on the temperature according to the Arrhenius equation. The activation parameters, Ea, ΔH≠ and ΔS≠, for the transition state on the reaction of complex formation (ST) , were determined. To explain these results for this phenomenon, and achieve a better extraction of the substrate, a model based on the substrate complexation by the carrier and the diffusion of the formed complex (ST) was developed. The experimental results verify this model and determine the microscopic parameters (Kass and D*). These studies show that these parameters Kass and D* are specific to facilitated transport of Cr(III) ions by each of the carriers and they are changing significantly with temperature.展开更多
The ionic liquid(IL) 1-butyl-3-methylimidazolium tetrafluoroborate treated with radiofrequency plasma is proposed for functionalization and immobilization on polyethersulfone supports to form supported ionic liquid me...The ionic liquid(IL) 1-butyl-3-methylimidazolium tetrafluoroborate treated with radiofrequency plasma is proposed for functionalization and immobilization on polyethersulfone supports to form supported ionic liquid membranes for CO_(2) separation.The effects of treatment time and transmembrane pressure difference on CO_(2) permeance were evaluated.The best gas permeation performance was obtained with a treatment time of 10 min and the transmembrane pressure difference was 0.25 MPa.Characterization of the materials by Fourier transform infrared spectroscopy,x-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy demonstrates that the IL is grafted with carboxyl groups and deprotonated through plasma treatment.A preliminary mechanism for the plasma treatment and facilitated transport of CO_(2)has been proposed on this basis.展开更多
Permeabilities and selectivities of gases such as carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen (N2) and methane (CH4) in six imidazolium-based ionic liquids ([emim][BF4], [bmim][BF4], [bmim][PF6], [ba...Permeabilities and selectivities of gases such as carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen (N2) and methane (CH4) in six imidazolium-based ionic liquids ([emim][BF4], [bmim][BF4], [bmim][PF6], [banim][BF4], [bmim][Tf2N] and [emim][CF3SO3]) supported on polyethersulfone microfiltration membranes are investigated in a single gas feed system using nitrogen as the environment and reference component at temperature from 25 to 45℃ and pressure of N2 from 100 to 400 kPa. It is found that SO2 has the highest permeability in the tested supported ionic liquid membranes, being an order of magnitude higher than that of CO2, and about 2 to 3 orders of magnitude larger than those of N2 and CH4. The observed selectivity of SO2 over the two ordinary gas components is also striking. It is shown experimentally that the dissolution and transport of gas components in the supported ionic liquid membranes, as well as the nature of ionic liquids play important roles in the gas permeation. A nonlinear increase of permeation rate with temperature and operation pressure is also observed for all sample gases. By considering the factors that influence the permeabilities and selectivities of CO2 and SO2, it is expected to develop an optimal supported ionic liquid membrane technology for the isolation of acidic gases in the near future.展开更多
The high price and toxicity of ionic liquids(ILs) have limited the design and application of supported ionic liquid membranes(SILMs) for CO_2 separation in both academic and industrial fields. In this work, [Choline][...The high price and toxicity of ionic liquids(ILs) have limited the design and application of supported ionic liquid membranes(SILMs) for CO_2 separation in both academic and industrial fields. In this work, [Choline][Pro]/polyethylene glycol 200(PEG200) mixtures were selected to prepare novel SILMs because of their green and costeffective characterization, and the CO_2/N_2 separation with the prepared SILMs was investigated experimentally at temperatures from 308.15 to 343.15 K. The temperature effect on the permeability, solubility and diffusivity of CO_2 was modeled with the Arrhenius equation. A competitive performance of the prepared SILMs was observed with high CO_2 permeability ranged in 343.3–1798.6 barrer and high CO_2/N_2 selectivity from 7.9 to 34.8.It was also found that the CO_2 permeability increased 3 times by decreasing the viscosity of liquids from 370 to38 m Pa·s. In addition, the inherent mechanism behind the significant permeability enhancement was revealed based on the diffusion-reaction theory, i.e. with the addition of PEG200, the overall resistance was substantially decreased and the SILMs process was switched from diffusion-control to reaction-control.展开更多
Permeation of Cu(Ⅱ) from its aqueous solution through a supported liquid membrane (SLM) containing di(2-ethylhexyl)phosphoric acid (D2EHPA) carrier dissolved in coconut oil has been studied. The effects of C...Permeation of Cu(Ⅱ) from its aqueous solution through a supported liquid membrane (SLM) containing di(2-ethylhexyl)phosphoric acid (D2EHPA) carrier dissolved in coconut oil has been studied. The effects of Cu(Ⅱ), pH (in feed), H2SO4 (stripping) and D2EHPA (in membrane) concentrations have been investigated. The stability of the D2EHPA-coconut oil has also been evaluated. High Cu(Ⅱ) concentration in the feed leads to an increase in flux from 4.1 × 10^-9 to 8.9 × 10^-9 mol/(m^2·s) within the Cu(Ⅱ) concentration range 7.8×10^-4-78.6×10^-4 mol/L at pH of 4.0 in the feed and 12.4 × 10^-4 mol/L D2EHPA in the membrane phase. Increase in H2SO4 concentration in strip solution leads to an increase in copper ions flux up to 0.25 mol/L H2SO4, providing a maximum flux of 7.4 × 10^-9 mol/(m^2·s). The optimum conditions for Cu(Ⅱ) transport are, pH of feed 4.0, 0.25 mol/L H2SO4 in strip phase and 12.4 × 10^-4 mol/L D2EHPA (membrane) in 0.5 μm pore size polytetrafluoroethylene (PTFE) membrane. It has been observed that Cu(Ⅱ) flux across the membrane tends to increase with the concentration of copper ions. Application of the method developed to copper plating bath rinse solutions has been found to be successful in the recovery of Cu(Ⅱ).展开更多
The instability mechanisms of the supported liquid membrane using Celgard 2500 membranes as support and tributyl phosphate dissolved in kerosene as carrier for phenol transport was studied by ele.etroehemical impedanc...The instability mechanisms of the supported liquid membrane using Celgard 2500 membranes as support and tributyl phosphate dissolved in kerosene as carrier for phenol transport was studied by ele.etroehemical impedance spectroscopy. Emulsion formation is demonstrated to be one of the main causes for the instability of supported liquid membrane in the present system. The emulsion-facilitated conditions, such as higher membrane liquid concentration, faster stirring speed, lower salt concentration and higher HLB value, would accelerate the degradation of supported liquid membrane. Other mechanisms including solubility and osmotic pressure work together to increase the membrane liauid loss.展开更多
Recovery of copper ions from wastewater using a hollow fiber supported emulsion liquid membrane (HFSELM) was studied with LIX984N as carrier, kerosene as diluents, and sulfuric acid solution as stripping phase. Effect...Recovery of copper ions from wastewater using a hollow fiber supported emulsion liquid membrane (HFSELM) was studied with LIX984N as carrier, kerosene as diluents, and sulfuric acid solution as stripping phase. Effects of compositions of feed and emulsion liquid phase, flow rates on both sides of membrane, and hollow fiber module parameters were investigated. The stability of the emulsion liquid phase without surfactant and the effect of buffer in the feed phase on the extraction rate were also evaluated. It is found that the stability of the emulsion phase without surfactant is poor. Higher flow velocity gives shorter residence time for the emulsion liquid phase on the tube side, reducing the effect of particle coalescence on the separation process. The extraction rate increases with the increase of feed phase pH, carrier concentration, hydrogen ion concentration in the stripping phase, and ef- fective hollow fiber area. The phase ratio in the emulsion liquid phase has a negative effect on extraction rate. The flow rates on both sides have little influence on the extraction performance of the HFSELM, while buffer addition in the feed solution improves the extraction efficiency.展开更多
The transport of Tb(III) in dispersion supported liquid membrane(DSLM) with polyvinylidene fluoride membrane(PVDF) as the support and dispersion solution including HCl solution as the stripping solution and di(...The transport of Tb(III) in dispersion supported liquid membrane(DSLM) with polyvinylidene fluoride membrane(PVDF) as the support and dispersion solution including HCl solution as the stripping solution and di(2-ethylhexyl) phosphoric acid(D2EHPA) dissolved in kerosene as the membrane solution, has been studied. The effects of pH value, initial concentration of Tb(III) and different ionic strength in the feed phase, volume ratio of membrane solution to stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on the transport of Tb(III) have also been investigated, respectively. As a result, the optimum transport conditions of Tb(III) were obtained, i.e., the concentration of HCl solution was 4.0 mol/L, the concentration of D2EHPA was 0.16 mol/L, the volume ratio of membrane solution to stripping solution was 30:30 in the dispersion phase and pH value was 4.5 in the feed phase. Ionic strength had no obvious effect on the transport of Tb(III). Under the optimum conditions, the transport percentage of Tb(III) was up to 96.1% in a transport time of 35 min when the initial concentration of Tb(IIl) was 1.0× 10 -4 mol/L. The diffusion coefficient of Tb(III) in the membrane and the thickness of diffusion layer between feed phase and membrane phase were obtained and the values were 1.82×10 -8 m2/s and 5.61 um, respectively. The calculated results were in good agreement with the literature data.展开更多
The interest in ionic liquids(IL) is motivated by its unique properties, such as negligible vapor pressure, thermal stability, wide electrochemical stability window, and tunability of properties. ILs have been highlig...The interest in ionic liquids(IL) is motivated by its unique properties, such as negligible vapor pressure, thermal stability, wide electrochemical stability window, and tunability of properties. ILs have been highlighted as solvents for liquid-liquid extraction and liquid membrane separation. To further expand its application in separation field, the ionic liquid membranes(ILMs) and its separation technology have been proposed and developed rapidly. This paper is to give a comprehensive overview on the recent applications of ILMs for the separation of various compounds, including organic compounds, mixed gases, and metal ions. Firstly, ILMs was classified into supported ionic liquid membranes(SILMs) and quasi-solidified ionic liquid membranes(QSILMs) according to the immobilization method of ILs. Then, preparation methods of ILMs, membrane stability as well as applications of ILMs in the separation of various mixtures were reviewed. Followed this, transport mechanisms of gaseous mixtures and organic compounds were elucidated in order to better understand the separation process of ILMs. This tutorial review intends to not only offer an overview on the development of ILMs but also provide a guide for ILMs preparations and applications.展开更多
The transport of Cu(II)from aqueous solutions containing buffer media through hollow fiber supported liquid membrane(HFSLM)using di(2-ethylhexyl)phosphoric acid(D2EHPA)dissolved in kerosene as membrane phase and hydro...The transport of Cu(II)from aqueous solutions containing buffer media through hollow fiber supported liquid membrane(HFSLM)using di(2-ethylhexyl)phosphoric acid(D2EHPA)dissolved in kerosene as membrane phase and hydrochloric acid as striping phase was investigated.A set of factors were studied,including tube side velocity,shell side velocity,pH of the feed phase,Cu(II)concentration in the feed phase,buffer media concentration and D2EHPA concentration in the membrane phase.Experimental results indicate that the mass transfer coefficient increases with increasing both carrier concentration in the organic phase and flow rates on the tube side and shell side,and decreases with increasing initial Cu(II)concentration in the feed phase.With increasing pH value and acetate concentration in the feed phase,the mass transfer coefficient reaches a maximum value then decreases.The optimal operating conditions are obtained at pH value of 4.44 and 0.1 mol·L -1 acetic ion concentration in feed phase,and carrier volume fraction of around 10%in kerosene as organic phase.A mathematical model of the transport mechanism through HFSLM is developed.The modeled results agree well with the experimental ones.展开更多
The transport of Dy(III) through a dispersion supported liquid membrane (DSLM) consisting of polyvinylidene fluoride membrane (PVDF) as the liquid membrane support and dispersion solution including HCI solution ...The transport of Dy(III) through a dispersion supported liquid membrane (DSLM) consisting of polyvinylidene fluoride membrane (PVDF) as the liquid membrane support and dispersion solution including HCI solution as the stripping solution and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (PC-88A) dissolved in kerosene as the membrane solution, was studied. The effects of pH value, initial concentration of Dy(III) and different ionic strength in the feed phase, volume ratio of membrane solution and stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on transport of Dy(III) were also investigated, respectively. As a result, when the concentration of HCI solution was 4.0 mol/L, concentration of PC-88A was 0.10 mol/L, and volume ratio of membrane solution and stripping solution was 40:20 in the dispersion phase, and pH value was 5.0 in the feed phase, the transport effect of Dy(III) was the best. Ionic strength had no obvious effect on transport of Dy(III). Under the optimum condition studied, when initial concentration of Dy(III) was 0.8×10^-4 mol/L, the transport rate of Dy(III) was up to 96.2% during the transport time of 95 rain. The kinetic equation was developed in terms of the law of mass diffusion and the theory of interface chemistry. The diffusion coefficient of Dy(III) in the membrane and the thickness of diffusion layer between feed phase and membrane phase were obtained and the values were 1.99×10^-7 m^2/s and 15.97 μm, respectively. The results were in good agreement with experimental results.展开更多
A mathematical model was developed to monitor the facilitated transport of germanium(IV) from oxalic acid solutions through a flat sheet supported liquid membrane(FSSLM) containing four trialkylphosphine oxides(Cyanex...A mathematical model was developed to monitor the facilitated transport of germanium(IV) from oxalic acid solutions through a flat sheet supported liquid membrane(FSSLM) containing four trialkylphosphine oxides(Cyanex 923). The FSSLM modeling was based on the extraction constant(Kext) calculated from the liquid-liquid extraction(LLX) modeling. The LLX model presented a reliable calculation of the extraction constant(Kex= 2.057×103 L/mol4). The FSSLM model was solved using Matlab■ software according to extraction constant, Fick’s law, and diffusional principles. The model predicts the overall mass transfer coefficient(Korg) to be 3.84 cm/s. Using this value, diffusion coefficients(Dm) for various Cyanex 923 concentrations of 0.126, 0.252, 0.378, 0.505, 0.631 and 0.757 mol/L are found to be 8.50×10^-4, 4.30×10^-4, 1.87×10^-4, 5.87×10^-5, 2.57×10^-5, 2.09×10^-5 cm2/s, respectively. The results show that the diffusion rate of the current study is approximately more than that of similar FSSLM systems containing Cyanex 923 used to transport various metals. The modeling values are in good agreement with the experimental data, showing the good reliability of the mathematical model.展开更多
The hollow fiber supported liquid membrane extraction was introduced to treat coal gasification wastewater to recover phenolic compounds,with tributyl phosphate (TBP) as carrier,kerosene as the membrane solvent,sodium...The hollow fiber supported liquid membrane extraction was introduced to treat coal gasification wastewater to recover phenolic compounds,with tributyl phosphate (TBP) as carrier,kerosene as the membrane solvent,sodium hydroxide solution as the stripping agent and PVDF as the membrane material. Factors having strong impact on the extraction efficiency were studied in detail,including the mass transfer mode,twophase flow rate,stripping phase concentration. As extraction system with 20% TBP-kerosene,parallel flow mass transfer,stripping phase concentration 0.1 mol/L,the optimal operating conditions could be obtained. Under the optimum operating conditions,the time required to reach equilibrium for the extraction is 50 min, and extraction efficiency of phenol is 86. 2% and the phenol concentration of effluent is 98.64 mg/L.展开更多
A novel idea of transport of yttrium(Ⅲ) metal ions through fibers supported liquid membrane in two stage processes namely source to membrane and membrane to receiving phase has been proposed.The fibers supported liqu...A novel idea of transport of yttrium(Ⅲ) metal ions through fibers supported liquid membrane in two stage processes namely source to membrane and membrane to receiving phase has been proposed.The fibers supported liquid membrane was impregnated with different concentrations carrier.The experimental variables explored were concentration of yttrium(Ⅲ) ions,pH of source phase,PC-88A concentration in membrane phase,acid concentration in receiving phase and stirring speed.The pre-concentration of yttrium(Ⅲ) ions ...展开更多
A novel d!sphase supplying supported liquid membrane (DSSLM), containing supplying feed phase andsupplying stripping phase tor transport behavior ot NI(Ⅱ), have been studied. The supplying supported feed phase in...A novel d!sphase supplying supported liquid membrane (DSSLM), containing supplying feed phase andsupplying stripping phase tor transport behavior ot NI(Ⅱ), have been studied. The supplying supported feed phase included feed solution and di(2-ethyhexyl) phosphoric acid (HDEHP) as the carrier in kerosene, and supplying stripping phase included HDEHP as the cartier in kerosene and HC1 as the stripping agent. The effects of volume ratio of membrane solution to feed solution (O/F), pH, initial concentration of Ni(Ⅱ) and ionic strength in the feedsolution, volume ratio of membrane solution to stripping solution (O/S), concentration of H2SO4 solution, HDEHP concentration in the supplying stripping phase on transport of Ni(/I), the advantages of DSSLM compared to the traditional supported liquid membrane (SLM), the system stability, the reuse of membrane solution and the reten- tion of membrane phase were studied. Experimental results indicated that the optimum transpgrt of Ni(Ⅱ) was oh-tained when H2SO4 concentration was 2.00 mol'L-', HDEHP concentration was 0.120 mol·L-1, and O/S was 4· 1 in the supplying stripping phase, O/F was 1 : 10 and pH was 5.20 in the supplying feed phase. The ionic strength in supplying feed phase had no obvious effect on transport of Ni(Ⅱ). When initial Ni(Ⅱ) concentration was 2.00x 10-4 mol/L, the transport percentage of Ni(Ⅱ) was up to 93.1% in 250 min. The kinetic equation was deduced in terms of the law of mass diffusion and the interface chemistry.展开更多
The Nd(III) extraction in flat renewal supported liquid membrane(FRSLM),with polyvinylidene fluoride membrane and renewal solution including HNO3 solution as the stripping solution and di(2-ethylhexyl) phosphori...The Nd(III) extraction in flat renewal supported liquid membrane(FRSLM),with polyvinylidene fluoride membrane and renewal solution including HNO3 solution as the stripping solution and di(2-ethylhexyl) phosphoric acid(D2EHPA) dissolved in kerosene as the membrane solution,was investigated.The effects of pH in the feed phase,volume ratio of membrane solution to stripping solution,concentra-tion of HNO3 solution and concentration of carrier in the renewal phase on extraction of Nd(III) were also studied,respectively.As a result,the optimum extraction conditions of Nd(III) were obtained when concentration of HNO3 solution was 4.00 mol/L,concentration of D2EHPA was 0.100 mol/L,and volume ratio of membrane solution to stripping solution was 1.00 in the renewal phase,and pH was 4.60 in the feed phase.When initial concentration of Nd(III) was 2.00×10-4 mol/L,the extraction percentage of Nd(III) was up to 92.9% in 75 min.展开更多
The Eu(III) separation in supported dispersion liquid membrane (SDLM), with polyvinylidene fluoride membrane (PVDF) as the support and dispersion solution containing HNO3 solution as the stripping solution and D...The Eu(III) separation in supported dispersion liquid membrane (SDLM), with polyvinylidene fluoride membrane (PVDF) as the support and dispersion solution containing HNO3 solution as the stripping solution and Di(2-ethylhexyl) phosphoric acid (D2EHPA) dis- solved in kerosene as the membrane solution, was studied. The effects ofpH value, initial concentration of Eu(III) and different ionic strengths in the feed phase, volume ratio of membrane solution and stripping solution, concentration of HNO3 solution, concentration of carrier, different stripping agents in the dispersion phase on the separation of Eu(III) were also investigated, respectively. As a result, the optimum separation conditions of Eu(III) were obtained as the concentration of HNO3 solution was 4.00 mol/L, concentration of D2EHPA was 0.160 mol/L, and volume ratio of membrane solution to stripping solution was 30:30 in the dispersion phase, and pH value was 5.00 in the feed phase. Ionic strength had no obvious effect on the separation of Eu(III). Under the optimum conditions studied, when initial concentration of Eu(III) was 1.00× 10^-4 mol/L, the separation rate of Eu(III) was up to 94.2% during the separation period of 35 min. The kinetic equation was developed in terms of the law of mass diffusion and the theory of interface chemistry. The results were in good agreement with the literature data.展开更多
A novel kind of supported combined liquid membrane (SCLM) has been studied for the Gd(IIl) transfer. SCLM contained polyvinylidene fluoride membrane (PVDF) as the liquid membrane support and renewal solution inc...A novel kind of supported combined liquid membrane (SCLM) has been studied for the Gd(IIl) transfer. SCLM contained polyvinylidene fluoride membrane (PVDF) as the liquid membrane support and renewal solution including HNO3 solution as the stripping solution and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (HEH(EH)P) as the carrier dissolved in kerosene. The mixed solution of carrier and kerosene was membrane solution. The optimum transport conditions of Gd(III) were that concentration of HNO3 solution was 4.00 tool/L, concentration of carrier was 0.16 mol/L, and volume ratio of membrane solution to stripping solution was 30:30 of the renewal phase, and pH value was 4.80 of the feed phase. Under the optimum condition studied, when initial concentration of Gd(III) was 1.00 × 10^-4 mol/L, the transfer rate of Gd(III) was 96.8% during 130 min.展开更多
Sheet-like calcite array and stable vaterite were synthesized by bio-mimetic supported liquid membrane system under different reaction conditions. Both of the FTIR spectra of products showed narrower peak at 1418 cm?1...Sheet-like calcite array and stable vaterite were synthesized by bio-mimetic supported liquid membrane system under different reaction conditions. Both of the FTIR spectra of products showed narrower peak at 1418 cm?1 than that of bulk CaCO3, and that of vaterite has a split in this peak.展开更多
基金All authors thank the Agence Universitaire de la Fran-cophonie(AUF)for financial support(PCSI 59113PS 014)Professor Jean-François Verchère from the University of Rouen(France)for his advice,fruitful dis-cussions,strong encouragement and exemplary coopera-tion.
文摘The technique of supported liquid membranes was used to achieve the facilitated transport of Cr(III) ions, using tow amphiphilic carriers, the methyl cholate and resorcinarene. For prepared SLMs, toluene as organic phase and film of polyvinylidene difluoride, as hydrophobic polymer support with 100 μm in thickness and 0.45 μm as the diameter of the pores. The macroscopic parameters (P and J0) on the transport of these ions were determined for different medium temperatures. For these different environments, the prepared SLMs were highly permeable and a clear evolution of these parameters was observed. The parameter J0 depended on the temperature according to the Arrhenius equation. The activation parameters, Ea, ΔH≠ and ΔS≠, for the transition state on the reaction of complex formation (ST) , were determined. To explain these results for this phenomenon, and achieve a better extraction of the substrate, a model based on the substrate complexation by the carrier and the diffusion of the formed complex (ST) was developed. The experimental results verify this model and determine the microscopic parameters (Kass and D*). These studies show that these parameters Kass and D* are specific to facilitated transport of Cr(III) ions by each of the carriers and they are changing significantly with temperature.
基金supported by the National Key R&D Program of China ‘Intergovernmental International Scientific and Technological Innovation Cooperation’ (No. 2019YFE0122100)。
文摘The ionic liquid(IL) 1-butyl-3-methylimidazolium tetrafluoroborate treated with radiofrequency plasma is proposed for functionalization and immobilization on polyethersulfone supports to form supported ionic liquid membranes for CO_(2) separation.The effects of treatment time and transmembrane pressure difference on CO_(2) permeance were evaluated.The best gas permeation performance was obtained with a treatment time of 10 min and the transmembrane pressure difference was 0.25 MPa.Characterization of the materials by Fourier transform infrared spectroscopy,x-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy demonstrates that the IL is grafted with carboxyl groups and deprotonated through plasma treatment.A preliminary mechanism for the plasma treatment and facilitated transport of CO_(2)has been proposed on this basis.
基金Supported by the National Natural Science Foundation of China (20776065), the Natural Science Foundation of Jiangsu Province (BK2008023), and the National Found for Fostering Talents of Basic Science 00630425).
文摘Permeabilities and selectivities of gases such as carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen (N2) and methane (CH4) in six imidazolium-based ionic liquids ([emim][BF4], [bmim][BF4], [bmim][PF6], [banim][BF4], [bmim][Tf2N] and [emim][CF3SO3]) supported on polyethersulfone microfiltration membranes are investigated in a single gas feed system using nitrogen as the environment and reference component at temperature from 25 to 45℃ and pressure of N2 from 100 to 400 kPa. It is found that SO2 has the highest permeability in the tested supported ionic liquid membranes, being an order of magnitude higher than that of CO2, and about 2 to 3 orders of magnitude larger than those of N2 and CH4. The observed selectivity of SO2 over the two ordinary gas components is also striking. It is shown experimentally that the dissolution and transport of gas components in the supported ionic liquid membranes, as well as the nature of ionic liquids play important roles in the gas permeation. A nonlinear increase of permeation rate with temperature and operation pressure is also observed for all sample gases. By considering the factors that influence the permeabilities and selectivities of CO2 and SO2, it is expected to develop an optimal supported ionic liquid membrane technology for the isolation of acidic gases in the near future.
基金Supported by the National Basic Research Program of China(2013CB733501)the National Natural Science Foundation of China(21136004,21176112,21476106,and21428601)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(No.20133221110001)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The high price and toxicity of ionic liquids(ILs) have limited the design and application of supported ionic liquid membranes(SILMs) for CO_2 separation in both academic and industrial fields. In this work, [Choline][Pro]/polyethylene glycol 200(PEG200) mixtures were selected to prepare novel SILMs because of their green and costeffective characterization, and the CO_2/N_2 separation with the prepared SILMs was investigated experimentally at temperatures from 308.15 to 343.15 K. The temperature effect on the permeability, solubility and diffusivity of CO_2 was modeled with the Arrhenius equation. A competitive performance of the prepared SILMs was observed with high CO_2 permeability ranged in 343.3–1798.6 barrer and high CO_2/N_2 selectivity from 7.9 to 34.8.It was also found that the CO_2 permeability increased 3 times by decreasing the viscosity of liquids from 370 to38 m Pa·s. In addition, the inherent mechanism behind the significant permeability enhancement was revealed based on the diffusion-reaction theory, i.e. with the addition of PEG200, the overall resistance was substantially decreased and the SILMs process was switched from diffusion-control to reaction-control.
文摘Permeation of Cu(Ⅱ) from its aqueous solution through a supported liquid membrane (SLM) containing di(2-ethylhexyl)phosphoric acid (D2EHPA) carrier dissolved in coconut oil has been studied. The effects of Cu(Ⅱ), pH (in feed), H2SO4 (stripping) and D2EHPA (in membrane) concentrations have been investigated. The stability of the D2EHPA-coconut oil has also been evaluated. High Cu(Ⅱ) concentration in the feed leads to an increase in flux from 4.1 × 10^-9 to 8.9 × 10^-9 mol/(m^2·s) within the Cu(Ⅱ) concentration range 7.8×10^-4-78.6×10^-4 mol/L at pH of 4.0 in the feed and 12.4 × 10^-4 mol/L D2EHPA in the membrane phase. Increase in H2SO4 concentration in strip solution leads to an increase in copper ions flux up to 0.25 mol/L H2SO4, providing a maximum flux of 7.4 × 10^-9 mol/(m^2·s). The optimum conditions for Cu(Ⅱ) transport are, pH of feed 4.0, 0.25 mol/L H2SO4 in strip phase and 12.4 × 10^-4 mol/L D2EHPA (membrane) in 0.5 μm pore size polytetrafluoroethylene (PTFE) membrane. It has been observed that Cu(Ⅱ) flux across the membrane tends to increase with the concentration of copper ions. Application of the method developed to copper plating bath rinse solutions has been found to be successful in the recovery of Cu(Ⅱ).
基金Supported by the National Natural Science Foundation of China (20676023).
文摘The instability mechanisms of the supported liquid membrane using Celgard 2500 membranes as support and tributyl phosphate dissolved in kerosene as carrier for phenol transport was studied by ele.etroehemical impedance spectroscopy. Emulsion formation is demonstrated to be one of the main causes for the instability of supported liquid membrane in the present system. The emulsion-facilitated conditions, such as higher membrane liquid concentration, faster stirring speed, lower salt concentration and higher HLB value, would accelerate the degradation of supported liquid membrane. Other mechanisms including solubility and osmotic pressure work together to increase the membrane liauid loss.
基金Supported by the National Natural Science Foundation of China (20676023)
文摘Recovery of copper ions from wastewater using a hollow fiber supported emulsion liquid membrane (HFSELM) was studied with LIX984N as carrier, kerosene as diluents, and sulfuric acid solution as stripping phase. Effects of compositions of feed and emulsion liquid phase, flow rates on both sides of membrane, and hollow fiber module parameters were investigated. The stability of the emulsion liquid phase without surfactant and the effect of buffer in the feed phase on the extraction rate were also evaluated. It is found that the stability of the emulsion phase without surfactant is poor. Higher flow velocity gives shorter residence time for the emulsion liquid phase on the tube side, reducing the effect of particle coalescence on the separation process. The extraction rate increases with the increase of feed phase pH, carrier concentration, hydrogen ion concentration in the stripping phase, and ef- fective hollow fiber area. The phase ratio in the emulsion liquid phase has a negative effect on extraction rate. The flow rates on both sides have little influence on the extraction performance of the HFSELM, while buffer addition in the feed solution improves the extraction efficiency.
基金Supported by the National Natural Science Foundation of China(No90401009)the Natural Science Foundation of Shaanxi Province, China(NoSJ08B16)+1 种基金the Science Research Program of Education Department of Shaanxi Province, China (No06JK215)the Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology, China (No602-210805)
文摘The transport of Tb(III) in dispersion supported liquid membrane(DSLM) with polyvinylidene fluoride membrane(PVDF) as the support and dispersion solution including HCl solution as the stripping solution and di(2-ethylhexyl) phosphoric acid(D2EHPA) dissolved in kerosene as the membrane solution, has been studied. The effects of pH value, initial concentration of Tb(III) and different ionic strength in the feed phase, volume ratio of membrane solution to stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on the transport of Tb(III) have also been investigated, respectively. As a result, the optimum transport conditions of Tb(III) were obtained, i.e., the concentration of HCl solution was 4.0 mol/L, the concentration of D2EHPA was 0.16 mol/L, the volume ratio of membrane solution to stripping solution was 30:30 in the dispersion phase and pH value was 4.5 in the feed phase. Ionic strength had no obvious effect on the transport of Tb(III). Under the optimum conditions, the transport percentage of Tb(III) was up to 96.1% in a transport time of 35 min when the initial concentration of Tb(IIl) was 1.0× 10 -4 mol/L. The diffusion coefficient of Tb(III) in the membrane and the thickness of diffusion layer between feed phase and membrane phase were obtained and the values were 1.82×10 -8 m2/s and 5.61 um, respectively. The calculated results were in good agreement with the literature data.
基金supported by the National Natural Science Foundation of China(21406235 and U1407111)the National High Technology Research and Development Program of China(863 Program,2014AA021006)
文摘The interest in ionic liquids(IL) is motivated by its unique properties, such as negligible vapor pressure, thermal stability, wide electrochemical stability window, and tunability of properties. ILs have been highlighted as solvents for liquid-liquid extraction and liquid membrane separation. To further expand its application in separation field, the ionic liquid membranes(ILMs) and its separation technology have been proposed and developed rapidly. This paper is to give a comprehensive overview on the recent applications of ILMs for the separation of various compounds, including organic compounds, mixed gases, and metal ions. Firstly, ILMs was classified into supported ionic liquid membranes(SILMs) and quasi-solidified ionic liquid membranes(QSILMs) according to the immobilization method of ILs. Then, preparation methods of ILMs, membrane stability as well as applications of ILMs in the separation of various mixtures were reviewed. Followed this, transport mechanisms of gaseous mixtures and organic compounds were elucidated in order to better understand the separation process of ILMs. This tutorial review intends to not only offer an overview on the development of ILMs but also provide a guide for ILMs preparations and applications.
基金Supported by the Program for New Century Excellent Talents in University (NCET-05-0122) the National Natural Science Foundation of China(20576008 20706003) the Ph.D.Programs Foundation of Ministry of Education of China(200800100001) The authors are grateful to Prof. Xiaolong Lii of Tianjin Polytechnic University for supplying PVDF hollow fibers.
文摘The transport of Cu(II)from aqueous solutions containing buffer media through hollow fiber supported liquid membrane(HFSLM)using di(2-ethylhexyl)phosphoric acid(D2EHPA)dissolved in kerosene as membrane phase and hydrochloric acid as striping phase was investigated.A set of factors were studied,including tube side velocity,shell side velocity,pH of the feed phase,Cu(II)concentration in the feed phase,buffer media concentration and D2EHPA concentration in the membrane phase.Experimental results indicate that the mass transfer coefficient increases with increasing both carrier concentration in the organic phase and flow rates on the tube side and shell side,and decreases with increasing initial Cu(II)concentration in the feed phase.With increasing pH value and acetate concentration in the feed phase,the mass transfer coefficient reaches a maximum value then decreases.The optimal operating conditions are obtained at pH value of 4.44 and 0.1 mol·L -1 acetic ion concentration in feed phase,and carrier volume fraction of around 10%in kerosene as organic phase.A mathematical model of the transport mechanism through HFSLM is developed.The modeled results agree well with the experimental ones.
基金supported by the National Natural Science Foundation of China (90401009)Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology (602-210805)
文摘The transport of Dy(III) through a dispersion supported liquid membrane (DSLM) consisting of polyvinylidene fluoride membrane (PVDF) as the liquid membrane support and dispersion solution including HCI solution as the stripping solution and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (PC-88A) dissolved in kerosene as the membrane solution, was studied. The effects of pH value, initial concentration of Dy(III) and different ionic strength in the feed phase, volume ratio of membrane solution and stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on transport of Dy(III) were also investigated, respectively. As a result, when the concentration of HCI solution was 4.0 mol/L, concentration of PC-88A was 0.10 mol/L, and volume ratio of membrane solution and stripping solution was 40:20 in the dispersion phase, and pH value was 5.0 in the feed phase, the transport effect of Dy(III) was the best. Ionic strength had no obvious effect on transport of Dy(III). Under the optimum condition studied, when initial concentration of Dy(III) was 0.8×10^-4 mol/L, the transport rate of Dy(III) was up to 96.2% during the transport time of 95 rain. The kinetic equation was developed in terms of the law of mass diffusion and the theory of interface chemistry. The diffusion coefficient of Dy(III) in the membrane and the thickness of diffusion layer between feed phase and membrane phase were obtained and the values were 1.99×10^-7 m^2/s and 15.97 μm, respectively. The results were in good agreement with experimental results.
文摘A mathematical model was developed to monitor the facilitated transport of germanium(IV) from oxalic acid solutions through a flat sheet supported liquid membrane(FSSLM) containing four trialkylphosphine oxides(Cyanex 923). The FSSLM modeling was based on the extraction constant(Kext) calculated from the liquid-liquid extraction(LLX) modeling. The LLX model presented a reliable calculation of the extraction constant(Kex= 2.057×103 L/mol4). The FSSLM model was solved using Matlab■ software according to extraction constant, Fick’s law, and diffusional principles. The model predicts the overall mass transfer coefficient(Korg) to be 3.84 cm/s. Using this value, diffusion coefficients(Dm) for various Cyanex 923 concentrations of 0.126, 0.252, 0.378, 0.505, 0.631 and 0.757 mol/L are found to be 8.50×10^-4, 4.30×10^-4, 1.87×10^-4, 5.87×10^-5, 2.57×10^-5, 2.09×10^-5 cm2/s, respectively. The results show that the diffusion rate of the current study is approximately more than that of similar FSSLM systems containing Cyanex 923 used to transport various metals. The modeling values are in good agreement with the experimental data, showing the good reliability of the mathematical model.
文摘The hollow fiber supported liquid membrane extraction was introduced to treat coal gasification wastewater to recover phenolic compounds,with tributyl phosphate (TBP) as carrier,kerosene as the membrane solvent,sodium hydroxide solution as the stripping agent and PVDF as the membrane material. Factors having strong impact on the extraction efficiency were studied in detail,including the mass transfer mode,twophase flow rate,stripping phase concentration. As extraction system with 20% TBP-kerosene,parallel flow mass transfer,stripping phase concentration 0.1 mol/L,the optimal operating conditions could be obtained. Under the optimum operating conditions,the time required to reach equilibrium for the extraction is 50 min, and extraction efficiency of phenol is 86. 2% and the phenol concentration of effluent is 98.64 mg/L.
基金supported by Department of Science and Technology,Government of India (GAP 271526)
文摘A novel idea of transport of yttrium(Ⅲ) metal ions through fibers supported liquid membrane in two stage processes namely source to membrane and membrane to receiving phase has been proposed.The fibers supported liquid membrane was impregnated with different concentrations carrier.The experimental variables explored were concentration of yttrium(Ⅲ) ions,pH of source phase,PC-88A concentration in membrane phase,acid concentration in receiving phase and stirring speed.The pre-concentration of yttrium(Ⅲ) ions ...
基金Supported by the Action Plan for the Development of Western China of the Chinese Academy of Sciences(KZCX2-XB2-13)the Knowledge Innovation Program of the Chinese Academy of Sciences(KSCX2-YW-N-003)Research Fund for Excellent Doctoral Thesis of Xi'an University of Tehcnology(602-210805 and 602-210804)
文摘A novel d!sphase supplying supported liquid membrane (DSSLM), containing supplying feed phase andsupplying stripping phase tor transport behavior ot NI(Ⅱ), have been studied. The supplying supported feed phase included feed solution and di(2-ethyhexyl) phosphoric acid (HDEHP) as the carrier in kerosene, and supplying stripping phase included HDEHP as the cartier in kerosene and HC1 as the stripping agent. The effects of volume ratio of membrane solution to feed solution (O/F), pH, initial concentration of Ni(Ⅱ) and ionic strength in the feedsolution, volume ratio of membrane solution to stripping solution (O/S), concentration of H2SO4 solution, HDEHP concentration in the supplying stripping phase on transport of Ni(/I), the advantages of DSSLM compared to the traditional supported liquid membrane (SLM), the system stability, the reuse of membrane solution and the reten- tion of membrane phase were studied. Experimental results indicated that the optimum transpgrt of Ni(Ⅱ) was oh-tained when H2SO4 concentration was 2.00 mol'L-', HDEHP concentration was 0.120 mol·L-1, and O/S was 4· 1 in the supplying stripping phase, O/F was 1 : 10 and pH was 5.20 in the supplying feed phase. The ionic strength in supplying feed phase had no obvious effect on transport of Ni(Ⅱ). When initial Ni(Ⅱ) concentration was 2.00x 10-4 mol/L, the transport percentage of Ni(Ⅱ) was up to 93.1% in 250 min. The kinetic equation was deduced in terms of the law of mass diffusion and the interface chemistry.
基金Project supported by the National Natural Science Foundation of China for Young Scientists (51109197)Foundation for Planning Project of West Action of Chinese Academy of Sciences (KZCX2-XB2-13)Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology (602-210805)
文摘The Nd(III) extraction in flat renewal supported liquid membrane(FRSLM),with polyvinylidene fluoride membrane and renewal solution including HNO3 solution as the stripping solution and di(2-ethylhexyl) phosphoric acid(D2EHPA) dissolved in kerosene as the membrane solution,was investigated.The effects of pH in the feed phase,volume ratio of membrane solution to stripping solution,concentra-tion of HNO3 solution and concentration of carrier in the renewal phase on extraction of Nd(III) were also studied,respectively.As a result,the optimum extraction conditions of Nd(III) were obtained when concentration of HNO3 solution was 4.00 mol/L,concentration of D2EHPA was 0.100 mol/L,and volume ratio of membrane solution to stripping solution was 1.00 in the renewal phase,and pH was 4.60 in the feed phase.When initial concentration of Nd(III) was 2.00×10-4 mol/L,the extraction percentage of Nd(III) was up to 92.9% in 75 min.
基金Project supported by the National Natural Science Foundation of China (90401009)the Action Plan for the Development of Western China of the Chinese Academy of Sciences (KZCX2-XB2-13)Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology (602-210805)
文摘The Eu(III) separation in supported dispersion liquid membrane (SDLM), with polyvinylidene fluoride membrane (PVDF) as the support and dispersion solution containing HNO3 solution as the stripping solution and Di(2-ethylhexyl) phosphoric acid (D2EHPA) dis- solved in kerosene as the membrane solution, was studied. The effects ofpH value, initial concentration of Eu(III) and different ionic strengths in the feed phase, volume ratio of membrane solution and stripping solution, concentration of HNO3 solution, concentration of carrier, different stripping agents in the dispersion phase on the separation of Eu(III) were also investigated, respectively. As a result, the optimum separation conditions of Eu(III) were obtained as the concentration of HNO3 solution was 4.00 mol/L, concentration of D2EHPA was 0.160 mol/L, and volume ratio of membrane solution to stripping solution was 30:30 in the dispersion phase, and pH value was 5.00 in the feed phase. Ionic strength had no obvious effect on the separation of Eu(III). Under the optimum conditions studied, when initial concentration of Eu(III) was 1.00× 10^-4 mol/L, the separation rate of Eu(III) was up to 94.2% during the separation period of 35 min. The kinetic equation was developed in terms of the law of mass diffusion and the theory of interface chemistry. The results were in good agreement with the literature data.
基金supported by the Foundation for Planning project of West Action of Chinese Academy of Sciences(No.KZCX2-XB2-13)the National Natural Science Foundation of China for Young Scientists(No. 41001131+2 种基金No.51009126)Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology(No. 602-210805No.602-210804)
文摘A novel kind of supported combined liquid membrane (SCLM) has been studied for the Gd(IIl) transfer. SCLM contained polyvinylidene fluoride membrane (PVDF) as the liquid membrane support and renewal solution including HNO3 solution as the stripping solution and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester (HEH(EH)P) as the carrier dissolved in kerosene. The mixed solution of carrier and kerosene was membrane solution. The optimum transport conditions of Gd(III) were that concentration of HNO3 solution was 4.00 tool/L, concentration of carrier was 0.16 mol/L, and volume ratio of membrane solution to stripping solution was 30:30 of the renewal phase, and pH value was 4.80 of the feed phase. Under the optimum condition studied, when initial concentration of Gd(III) was 1.00 × 10^-4 mol/L, the transfer rate of Gd(III) was 96.8% during 130 min.
基金Project supported by the National Natural Science Foundation (No. 20471043) of China and Nano-foundation (No. 0259nm021) of Shanghai.
文摘Sheet-like calcite array and stable vaterite were synthesized by bio-mimetic supported liquid membrane system under different reaction conditions. Both of the FTIR spectra of products showed narrower peak at 1418 cm?1 than that of bulk CaCO3, and that of vaterite has a split in this peak.