Substantially lightweight brake discs with high wear resistance are highly desirable in the automotive industry.This paper presents an investigation of the precision-engineering design and development of automotive br...Substantially lightweight brake discs with high wear resistance are highly desirable in the automotive industry.This paper presents an investigation of the precision-engineering design and development of automotive brake discs using nonhomogeneous Al/SiC metal-matrixcomposite materials.The design and development are based on modeling and analysis following stringent precision-engineering principles,i.e.,brake-disc systems that operate repeatably and stably over time as enabled by precision-engineering design.The design and development are further supported by tribological experimental testing and finite-element simulations.The results show the industrial feasibility of the innovative design approach and the application merits of using advanced metal-matrix-composite materials for next-generation automotive and electric vehicles.展开更多
A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-indu...A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.展开更多
Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed t...Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well.展开更多
To investigate the strong random nature of the geometric interfaces between soil and rock, a rock-soil slope is considered as a two-phase random medium. A nonlinear translation of a Gaussian field is utilized to simul...To investigate the strong random nature of the geometric interfaces between soil and rock, a rock-soil slope is considered as a two-phase random medium. A nonlinear translation of a Gaussian field is utilized to simulate the two-phase random media, such that the soil(or rock) volume fraction and the inclination of the soil layer can be examined. The finite element method with random media incorporated as the material properties is used to determine the factor of safety of the rock-soil slope. Monte-Carlo simulations are used to estimate the statistical characteristics of the factor of safety. The failure mode of the rock-soil slope is examined by observing the maximum principal plastic strain at incipient slope failure. It is found that the critical surface of a rock-soil slope is fairly irregular, and it significantly differs from that of a pure soil slope. The factor of safety is sensitive to the soil volume faction, but it is predictable. The average factor of safety could be well predicted by the weighted harmonic average between the strength of soil and rock; the prediction model is practical and simple. Parametric studies on the inclination of the soil layer demonstrate that the most instable scenario occurs when the slope angle is consistent with the inclination of the soil layer.展开更多
A long slope consisting of spatially random soils is a common geographical feature. This paper examined the necessity of three-dimensional(3 D) analysis when dealing with slope with full randomness in soil properties....A long slope consisting of spatially random soils is a common geographical feature. This paper examined the necessity of three-dimensional(3 D) analysis when dealing with slope with full randomness in soil properties. Although 3 D random finite element analysis can well reflect the spatial variability of soil properties, it is often time-consuming for probabilistic stability analysis. For this reason, we also examined the least advantageous(or most pessimistic) cross-section of the studied slope. The concept of"most pessimistic" refers to the minimal cross-sectional average of undrained shear strength. The selection of the most pessimistic section is achievable by simulating the undrained shear strength as a 3 D random field. Random finite element analysis results suggest that two-dimensional(2 D) plane strain analysis based the most pessimistic cross-section generally provides a more conservative result than the corresponding full 3 D analysis. The level of conservativeness is around 15% on average. This result may have engineering implications for slope design where computationally tractable 2 D analyses based on the procedure proposed in this study could ensure conservative results.展开更多
This work details the simulation of tsunami waves generated by seaquakes in the Manila Trench and their effect on fixed oil and gas jacket platforms in waters offshore North Borneo. For this study, a four-leg living q...This work details the simulation of tsunami waves generated by seaquakes in the Manila Trench and their effect on fixed oil and gas jacket platforms in waters offshore North Borneo. For this study, a four-leg living quarter jacket platform located in a water depth of 63 m is modelled in SACS v5.3. Malaysia has traditionally been perceived to be safe from the hazards of earthquakes and tsunamis. Local design practices tend to neglect tsunami waves and include no such provisions. In 2004, a 9.3Mw seaquake occurred off the northwest coast of Aceh, which generated tsunami waves that caused destruction in Malaysia totalling US$ 25 million and 68 deaths. This event prompted an awareness of the need to study the reliability of fixed offshore platforms scattered throughout Malaysian waters. In this paper, we present a review of research on the seismicity of the Manila Trench, which is perceived to be high risk for Southeast Asia. From the tsunami numerical model TUNA-M2, we extract computer-simulated tsunami waves at prescribed grid points in the vicinity of the platforms in the region. Using wave heights as input, we simulate the tsunami using SACS v5.3 structural analysis software of offshore platforms, which is widely accepted by the industry. We employ the nonlinear solitary wave theory in our tsunami loading calculations for the platforms, and formulate a platform-specific risk quantification system. We then perform an intensive structural sensitivity analysis and derive a corresponding platform-specific risk rating model.展开更多
A numerical model of 2.5D non-isothermal resin transfer molding simulation is developed for thin part based on the control volume/finite element method. The non-uniform temperature distribution and the heat generation...A numerical model of 2.5D non-isothermal resin transfer molding simulation is developed for thin part based on the control volume/finite element method. The non-uniform temperature distribution and the heat generation during the filling stage are modeled with the lumped temperature system and the species balance. Numerical algorithm of the simulation are studied. The molding simulation for a part is performed to show the effectiveness of simulating filling time, temperature distribution and curing degree.展开更多
The methodological quality of subject-specific finite element analysis papers depends on the rigor of the study design and detailed description of key elements,while assessment instruments are often confined to clinic...The methodological quality of subject-specific finite element analysis papers depends on the rigor of the study design and detailed description of key elements,while assessment instruments are often confined to clinical trials or quasi-experiments.This study aims to present an instrument for methodological quality assessment of singlesubject finite element analysis used in computational orthopaedics(MQSSFE).Based upon existing instruments and relevant review papers,a pilot version was developed consisting of 37 items with 6 domains,including study design and presentation of findings,subject recruitment,model reconstruction and configuration,boundary and loading conditions(simulation),model verification and validation,and model assumption and validity.We interviewed four experts in the field to assess the face validity and refined the instrument.The instrument was tested for interrater reliability among two assessors on nine finite element study papers.Also,the criterion validity was evaluated by comparing the similarity of the MQSSFE and the modified Down and Black instrument.The intraclass correlation coefficient was 0.965,while the MQSSFE was significantly moderately correlated with the modified Down and Black instruments(r=0.61).We believed that MQSSFE was adequately appropriate,reliable,and valid for assessing the methodological quality for finite element studies used in computational orthopaedics.The instrument could facilitate quality assessment in the systematic reviews of finite element models and checklists for fidelity.展开更多
文摘Substantially lightweight brake discs with high wear resistance are highly desirable in the automotive industry.This paper presents an investigation of the precision-engineering design and development of automotive brake discs using nonhomogeneous Al/SiC metal-matrixcomposite materials.The design and development are based on modeling and analysis following stringent precision-engineering principles,i.e.,brake-disc systems that operate repeatably and stably over time as enabled by precision-engineering design.The design and development are further supported by tribological experimental testing and finite-element simulations.The results show the industrial feasibility of the innovative design approach and the application merits of using advanced metal-matrix-composite materials for next-generation automotive and electric vehicles.
文摘A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0074936)
文摘Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well.
基金supported by the International Science and Technology Cooperation Programme of Hainan Province,China (Grant No.ZDYF2016226)the National Natural Science Foundation of China(Grant No.51879203)
文摘To investigate the strong random nature of the geometric interfaces between soil and rock, a rock-soil slope is considered as a two-phase random medium. A nonlinear translation of a Gaussian field is utilized to simulate the two-phase random media, such that the soil(or rock) volume fraction and the inclination of the soil layer can be examined. The finite element method with random media incorporated as the material properties is used to determine the factor of safety of the rock-soil slope. Monte-Carlo simulations are used to estimate the statistical characteristics of the factor of safety. The failure mode of the rock-soil slope is examined by observing the maximum principal plastic strain at incipient slope failure. It is found that the critical surface of a rock-soil slope is fairly irregular, and it significantly differs from that of a pure soil slope. The factor of safety is sensitive to the soil volume faction, but it is predictable. The average factor of safety could be well predicted by the weighted harmonic average between the strength of soil and rock; the prediction model is practical and simple. Parametric studies on the inclination of the soil layer demonstrate that the most instable scenario occurs when the slope angle is consistent with the inclination of the soil layer.
基金supported by the Key Research&Development Plan Science and Technology Cooperation Programme of Hainan Province,China(Grant No.ZDYF2016226)the National Natural Science Foundation of China(Grant Nos.51879203,51808421)
文摘A long slope consisting of spatially random soils is a common geographical feature. This paper examined the necessity of three-dimensional(3 D) analysis when dealing with slope with full randomness in soil properties. Although 3 D random finite element analysis can well reflect the spatial variability of soil properties, it is often time-consuming for probabilistic stability analysis. For this reason, we also examined the least advantageous(or most pessimistic) cross-section of the studied slope. The concept of"most pessimistic" refers to the minimal cross-sectional average of undrained shear strength. The selection of the most pessimistic section is achievable by simulating the undrained shear strength as a 3 D random field. Random finite element analysis results suggest that two-dimensional(2 D) plane strain analysis based the most pessimistic cross-section generally provides a more conservative result than the corresponding full 3 D analysis. The level of conservativeness is around 15% on average. This result may have engineering implications for slope design where computationally tractable 2 D analyses based on the procedure proposed in this study could ensure conservative results.
基金Universiti Teknologi PETRONAS Research Grant(No.0153B2-A44)
文摘This work details the simulation of tsunami waves generated by seaquakes in the Manila Trench and their effect on fixed oil and gas jacket platforms in waters offshore North Borneo. For this study, a four-leg living quarter jacket platform located in a water depth of 63 m is modelled in SACS v5.3. Malaysia has traditionally been perceived to be safe from the hazards of earthquakes and tsunamis. Local design practices tend to neglect tsunami waves and include no such provisions. In 2004, a 9.3Mw seaquake occurred off the northwest coast of Aceh, which generated tsunami waves that caused destruction in Malaysia totalling US$ 25 million and 68 deaths. This event prompted an awareness of the need to study the reliability of fixed offshore platforms scattered throughout Malaysian waters. In this paper, we present a review of research on the seismicity of the Manila Trench, which is perceived to be high risk for Southeast Asia. From the tsunami numerical model TUNA-M2, we extract computer-simulated tsunami waves at prescribed grid points in the vicinity of the platforms in the region. Using wave heights as input, we simulate the tsunami using SACS v5.3 structural analysis software of offshore platforms, which is widely accepted by the industry. We employ the nonlinear solitary wave theory in our tsunami loading calculations for the platforms, and formulate a platform-specific risk quantification system. We then perform an intensive structural sensitivity analysis and derive a corresponding platform-specific risk rating model.
文摘A numerical model of 2.5D non-isothermal resin transfer molding simulation is developed for thin part based on the control volume/finite element method. The non-uniform temperature distribution and the heat generation during the filling stage are modeled with the lumped temperature system and the species balance. Numerical algorithm of the simulation are studied. The molding simulation for a part is performed to show the effectiveness of simulating filling time, temperature distribution and curing degree.
基金This work was supported by the Key R&D Program granted by the Ministry of Science and Technology of China(reference number:2018YFB1107000)the National Natural Science Foundation of China(reference numbers:11732015,11972315)+1 种基金the Project of Academic Leader of Health System(reference number:PWRd2019-05)the Project of Novel Interdisciplinary of Health System(reference number:PWXx2020-08)in Pudong New Area,Shanghai,China.
文摘The methodological quality of subject-specific finite element analysis papers depends on the rigor of the study design and detailed description of key elements,while assessment instruments are often confined to clinical trials or quasi-experiments.This study aims to present an instrument for methodological quality assessment of singlesubject finite element analysis used in computational orthopaedics(MQSSFE).Based upon existing instruments and relevant review papers,a pilot version was developed consisting of 37 items with 6 domains,including study design and presentation of findings,subject recruitment,model reconstruction and configuration,boundary and loading conditions(simulation),model verification and validation,and model assumption and validity.We interviewed four experts in the field to assess the face validity and refined the instrument.The instrument was tested for interrater reliability among two assessors on nine finite element study papers.Also,the criterion validity was evaluated by comparing the similarity of the MQSSFE and the modified Down and Black instrument.The intraclass correlation coefficient was 0.965,while the MQSSFE was significantly moderately correlated with the modified Down and Black instruments(r=0.61).We believed that MQSSFE was adequately appropriate,reliable,and valid for assessing the methodological quality for finite element studies used in computational orthopaedics.The instrument could facilitate quality assessment in the systematic reviews of finite element models and checklists for fidelity.