Fingerprint authentication system is used to verify users' identification according to the characteristics of their fingerprints.However,this system has some security and privacy problems.For example,some artifici...Fingerprint authentication system is used to verify users' identification according to the characteristics of their fingerprints.However,this system has some security and privacy problems.For example,some artificial fingerprints can trick the fingerprint authentication system and access information using real users' identification.Therefore,a fingerprint liveness detection algorithm needs to be designed to prevent illegal users from accessing privacy information.In this paper,a new software-based liveness detection approach using multi-scale local phase quantity(LPQ) and principal component analysis(PCA) is proposed.The feature vectors of a fingerprint are constructed through multi-scale LPQ.PCA technology is also introduced to reduce the dimensionality of the feature vectors and gain more effective features.Finally,a training model is gained using support vector machine classifier,and the liveness of a fingerprint is detected on the basis of the training model.Experimental results demonstrate that our proposed method can detect the liveness of users' fingerprints and achieve high recognition accuracy.This study also confirms that multi-resolution analysis is a useful method for texture feature extraction during fingerprint liveness detection.展开更多
In this paper, a class of lattice supports in the lattice space Zm is found to be inherently improper because any rational parametrization from Cm to Cm defined on such a support is improper. The improper index for su...In this paper, a class of lattice supports in the lattice space Zm is found to be inherently improper because any rational parametrization from Cm to Cm defined on such a support is improper. The improper index for such a lattice support is defined to be the gcd of the normalized volumes of all the simplex sub-supports. The structure of an improper support S is analyzed and shrinking transformations are constructed to transform S to a proper one. For a generic rational parametrization RP defined on an improper support S, we prove that its improper index is the improper index of S and give a proper reparametrization algorithm for RP. Finally, properties for rational parametrizations defined on an improper support and with numerical coefficients are also considered.展开更多
基金supported by the NSFC (U1536206,61232016,U1405254,61373133, 61502242)BK20150925the PAPD fund
文摘Fingerprint authentication system is used to verify users' identification according to the characteristics of their fingerprints.However,this system has some security and privacy problems.For example,some artificial fingerprints can trick the fingerprint authentication system and access information using real users' identification.Therefore,a fingerprint liveness detection algorithm needs to be designed to prevent illegal users from accessing privacy information.In this paper,a new software-based liveness detection approach using multi-scale local phase quantity(LPQ) and principal component analysis(PCA) is proposed.The feature vectors of a fingerprint are constructed through multi-scale LPQ.PCA technology is also introduced to reduce the dimensionality of the feature vectors and gain more effective features.Finally,a training model is gained using support vector machine classifier,and the liveness of a fingerprint is detected on the basis of the training model.Experimental results demonstrate that our proposed method can detect the liveness of users' fingerprints and achieve high recognition accuracy.This study also confirms that multi-resolution analysis is a useful method for texture feature extraction during fingerprint liveness detection.
基金This research is supported by the National Key Basic Research Project of China under Grant No. 2011CB302400 and the National Natural Science Foundation of China under Grant No. 10901163.
文摘In this paper, a class of lattice supports in the lattice space Zm is found to be inherently improper because any rational parametrization from Cm to Cm defined on such a support is improper. The improper index for such a lattice support is defined to be the gcd of the normalized volumes of all the simplex sub-supports. The structure of an improper support S is analyzed and shrinking transformations are constructed to transform S to a proper one. For a generic rational parametrization RP defined on an improper support S, we prove that its improper index is the improper index of S and give a proper reparametrization algorithm for RP. Finally, properties for rational parametrizations defined on an improper support and with numerical coefficients are also considered.