利用常规方法检测网络数据流异常存在检测效率低的问题,为此提出基于改进支持向量数据描述(Support Vector Data Description,SVDD)算法的网络数据流异常检测方法。首先,选取一对一的构造方法将通信网络异常流量数据分为两个类别;其次,...利用常规方法检测网络数据流异常存在检测效率低的问题,为此提出基于改进支持向量数据描述(Support Vector Data Description,SVDD)算法的网络数据流异常检测方法。首先,选取一对一的构造方法将通信网络异常流量数据分为两个类别;其次,根据数据流的处理标准和需求,采用聚类分析技术构建监测模型;最后,通过改进SVDD流量异常检测模型对经过聚类特征提取的数据进行识别和检测。实验结果表明,该方法的检测准确率均高于97.5%,检测耗时较短,优于对照组。展开更多
在解决单分类问题的支持向量数据描述算法的基础上提出了适用于两类不平衡问题的I-SVDD(imbalance-support vector date description)算法.该算法通过增加样本的分布信息,对带野值的SVDD算法中的C值重新进行了定义.采用该算法对UC I数...在解决单分类问题的支持向量数据描述算法的基础上提出了适用于两类不平衡问题的I-SVDD(imbalance-support vector date description)算法.该算法通过增加样本的分布信息,对带野值的SVDD算法中的C值重新进行了定义.采用该算法对UC I数据集和人工样本集进行实验表明,改进后的I-SVDD算法比带野值的SVDD算法的AUC值平均提高12%以上;比AdaBoost算法在正类查全率上平均提高35%,精确度也提高了2%以上.I-SVDD算法在保证少数类样本高分类精度前提下,还有效提高了全样本的分类精度,更符合现实不平衡问题中对少数类样本的处理要求.展开更多
支持向量数据描述(support vector data description,SVDD)是一种具有单类数据描述能力的数据分类算法,因具有结构风险最小化的特性而受到广泛关注。SVDD的参数优化是影响其分类效果的关键问题,本文通过引入样本点的密度信息,提出了以...支持向量数据描述(support vector data description,SVDD)是一种具有单类数据描述能力的数据分类算法,因具有结构风险最小化的特性而受到广泛关注。SVDD的参数优化是影响其分类效果的关键问题,本文通过引入样本点的密度信息,提出了以界外密度最小化为目标的参数优化函数,避免了漏检率的计算问题,可充分利用训练数据的分布信息,提高数据描述能力,降低错分率。仿真实验和UCI标准数据库的对比验证表明,优化后的SVDD算法能够有效降低漏检率和错分率,提高算法性能。展开更多
支持向量数据描述(support vector data description,SVDD)常用于实现目标类样本充分、非目标类样本多样化的两类分类。在雷达目标识别应用中,SVDD分类性能随样本噪声增加迅速下降。为了解决这个问题,通过深入分析SVDD抗噪性能差的原因...支持向量数据描述(support vector data description,SVDD)常用于实现目标类样本充分、非目标类样本多样化的两类分类。在雷达目标识别应用中,SVDD分类性能随样本噪声增加迅速下降。为了解决这个问题,通过深入分析SVDD抗噪性能差的原因,提出了基于自适应SVDD的雷达目标分类方法。该方法利用接收机工作特性曲线建立信噪比与分类最优超球半径的关系模型,在目标分类过程中,针对不同信噪比自适应选择分类判决门限。仿真实验表明,相比于常规SVDD方法,自适应SVDD方法大大提高了低信噪比下目标分类性能。展开更多
为了提高一类支持向量数据描述(Support vector data description,SVDD)对未知样本的决策速度,本文从样本的核特征空间出发,利用核超球球心在原始样本特征空间中的原像,提出一种SVDD的快速决策方法(Fast decision approach of SVDD,FDA-...为了提高一类支持向量数据描述(Support vector data description,SVDD)对未知样本的决策速度,本文从样本的核特征空间出发,利用核超球球心在原始样本特征空间中的原像,提出一种SVDD的快速决策方法(Fast decision approach of SVDD,FDA-SVDD),使得SVDD的决策复杂度从O(n)降低到O(1).同时,对球心原像所在空间进行了分析,并在此基础上给出了两种原像逼近方法.多种真实数据集实验表明,FDA-SVDD方法在保证测试精度的同时,能快速实现对未知样本的决策.展开更多
分析了多类支持向量数据描述(support vector data description,SVDD)算法存在的问题,提出一种新的不平衡数据v-NSVDD多分类算法.该方法借鉴了v-SVM方法以及带有负类的SVDD的思想,并基于不同类别样本间隔最大原理,较好地克服噪声和在野...分析了多类支持向量数据描述(support vector data description,SVDD)算法存在的问题,提出一种新的不平衡数据v-NSVDD多分类算法.该方法借鉴了v-SVM方法以及带有负类的SVDD的思想,并基于不同类别样本间隔最大原理,较好地克服噪声和在野点的影响,提高了分类模型的泛化性能;通过样本加权的方法解决了不平衡类别样本预测精度低的问题,并在理论上给出了根据类别样本数量设置样本加权系数的方法.针对实际应用存在大量复杂、非线性分类数据,通过核方法把上述线性分类算法推广到非线性数据分类情形.由于现有的多分类器无法实现拒判,而且每个分类器的核函数参数不同,导致数据点与各个超球中心距离的计算结果与实际距离不相符,影响了数据判决结果的准确性和可靠性.针对上述问题,给出基于相对距离和K-NN规则相结合的多分类方法,提高了分类结果的准确性和可靠性.使用Benchmark数据集进行仿真实验,结果表明本算法能够获得较低的分类误差,能够有效处理样本不平衡问题.展开更多
由于化工过程的复杂性,数据往往存在动态以及序列之间具有相关性特点,传统的支持向量数据描述(Support Vector Data Description,SVDD)方法,很难保证故障监测的准确性和实时性,提出一种基于加权的动态SVDD(WDSVDD)在线实时故障监测方法...由于化工过程的复杂性,数据往往存在动态以及序列之间具有相关性特点,传统的支持向量数据描述(Support Vector Data Description,SVDD)方法,很难保证故障监测的准确性和实时性,提出一种基于加权的动态SVDD(WDSVDD)在线实时故障监测方法,引入动态方法,考虑了数据之间的序列相关性,利用加权的方法把有用的信息突出显示,利用SVDD方法建立模型,实现了在线实时故障监测。该方法不仅克服了过程数据非高斯、非线性特性对故障监测带来的影响,并且考虑了数据的动态特性和序列之间的关系,通过在数值仿真和TE过程实例中的应用验证了方法的有效性。展开更多
文摘利用常规方法检测网络数据流异常存在检测效率低的问题,为此提出基于改进支持向量数据描述(Support Vector Data Description,SVDD)算法的网络数据流异常检测方法。首先,选取一对一的构造方法将通信网络异常流量数据分为两个类别;其次,根据数据流的处理标准和需求,采用聚类分析技术构建监测模型;最后,通过改进SVDD流量异常检测模型对经过聚类特征提取的数据进行识别和检测。实验结果表明,该方法的检测准确率均高于97.5%,检测耗时较短,优于对照组。
文摘在解决单分类问题的支持向量数据描述算法的基础上提出了适用于两类不平衡问题的I-SVDD(imbalance-support vector date description)算法.该算法通过增加样本的分布信息,对带野值的SVDD算法中的C值重新进行了定义.采用该算法对UC I数据集和人工样本集进行实验表明,改进后的I-SVDD算法比带野值的SVDD算法的AUC值平均提高12%以上;比AdaBoost算法在正类查全率上平均提高35%,精确度也提高了2%以上.I-SVDD算法在保证少数类样本高分类精度前提下,还有效提高了全样本的分类精度,更符合现实不平衡问题中对少数类样本的处理要求.
文摘支持向量数据描述(support vector data description,SVDD)是一种具有单类数据描述能力的数据分类算法,因具有结构风险最小化的特性而受到广泛关注。SVDD的参数优化是影响其分类效果的关键问题,本文通过引入样本点的密度信息,提出了以界外密度最小化为目标的参数优化函数,避免了漏检率的计算问题,可充分利用训练数据的分布信息,提高数据描述能力,降低错分率。仿真实验和UCI标准数据库的对比验证表明,优化后的SVDD算法能够有效降低漏检率和错分率,提高算法性能。
文摘支持向量数据描述(support vector data description,SVDD)常用于实现目标类样本充分、非目标类样本多样化的两类分类。在雷达目标识别应用中,SVDD分类性能随样本噪声增加迅速下降。为了解决这个问题,通过深入分析SVDD抗噪性能差的原因,提出了基于自适应SVDD的雷达目标分类方法。该方法利用接收机工作特性曲线建立信噪比与分类最优超球半径的关系模型,在目标分类过程中,针对不同信噪比自适应选择分类判决门限。仿真实验表明,相比于常规SVDD方法,自适应SVDD方法大大提高了低信噪比下目标分类性能。
文摘为了提高一类支持向量数据描述(Support vector data description,SVDD)对未知样本的决策速度,本文从样本的核特征空间出发,利用核超球球心在原始样本特征空间中的原像,提出一种SVDD的快速决策方法(Fast decision approach of SVDD,FDA-SVDD),使得SVDD的决策复杂度从O(n)降低到O(1).同时,对球心原像所在空间进行了分析,并在此基础上给出了两种原像逼近方法.多种真实数据集实验表明,FDA-SVDD方法在保证测试精度的同时,能快速实现对未知样本的决策.
文摘分析了多类支持向量数据描述(support vector data description,SVDD)算法存在的问题,提出一种新的不平衡数据v-NSVDD多分类算法.该方法借鉴了v-SVM方法以及带有负类的SVDD的思想,并基于不同类别样本间隔最大原理,较好地克服噪声和在野点的影响,提高了分类模型的泛化性能;通过样本加权的方法解决了不平衡类别样本预测精度低的问题,并在理论上给出了根据类别样本数量设置样本加权系数的方法.针对实际应用存在大量复杂、非线性分类数据,通过核方法把上述线性分类算法推广到非线性数据分类情形.由于现有的多分类器无法实现拒判,而且每个分类器的核函数参数不同,导致数据点与各个超球中心距离的计算结果与实际距离不相符,影响了数据判决结果的准确性和可靠性.针对上述问题,给出基于相对距离和K-NN规则相结合的多分类方法,提高了分类结果的准确性和可靠性.使用Benchmark数据集进行仿真实验,结果表明本算法能够获得较低的分类误差,能够有效处理样本不平衡问题.
文摘由于化工过程的复杂性,数据往往存在动态以及序列之间具有相关性特点,传统的支持向量数据描述(Support Vector Data Description,SVDD)方法,很难保证故障监测的准确性和实时性,提出一种基于加权的动态SVDD(WDSVDD)在线实时故障监测方法,引入动态方法,考虑了数据之间的序列相关性,利用加权的方法把有用的信息突出显示,利用SVDD方法建立模型,实现了在线实时故障监测。该方法不仅克服了过程数据非高斯、非线性特性对故障监测带来的影响,并且考虑了数据的动态特性和序列之间的关系,通过在数值仿真和TE过程实例中的应用验证了方法的有效性。