An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often...An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often confronted with the problem of insufficient data points and noisy circumstances, which led to unsatisfactory results. Compared with fractal dimension as well as the standard ApEn, the improved ApEn can extract information underlying sEMG signals more efficiently and accu- rately. The method introduced here can also be applied to other medium-sized and noisy physiological signals.展开更多
This study is aimed at assessing muscle fatigue during a static contraction using multifractal analysis and found that the surface electromyographic (SEMG) signals characterized multiffactality during a static contr...This study is aimed at assessing muscle fatigue during a static contraction using multifractal analysis and found that the surface electromyographic (SEMG) signals characterized multiffactality during a static contraction. By applying the method of direct determination ofthef(a) singularity spectrum, the area of the multifractal spectrum of the SEMG signals was computed. The results showed that the spectrum area significantly increased during muscle fatigue. Therefore the area could be used as an assessor of muscle fatigue. Compared with the median frequency (MDF)--the most popular indicator of muscle fatigue, the spectrum area presented here showed higher sensitivity during a static contraction. So the singularity spectrum area is considered to be a more effective indicator than the MDF for estimating muscle fatigue.展开更多
The surface electromyography(sEMG)is one of the basic processing techniques to the gesture recognition because of its inherent advantages of easy collection and non-invasion.However,limited by feature extraction and c...The surface electromyography(sEMG)is one of the basic processing techniques to the gesture recognition because of its inherent advantages of easy collection and non-invasion.However,limited by feature extraction and classifier selection,the adaptability and accuracy of the conventional machine learning still need to promote with the increase of the input dimension and the number of output classifications.Moreover,due to the different characteristics of sEMG data and image data,the conventional convolutional neural network(CNN)have yet to fit sEMG signals.In this paper,a novel hybrid model combining CNN with the graph convolutional network(GCN)was constructed to improve the performance of the gesture recognition.Based on the characteristics of sEMG signal,GCN was introduced into the model through a joint voting network to extract the muscle synergy feature of the sEMG signal.Such strategy optimizes the structure and convolution kernel parameters of the residual network(ResNet)with the classification accuracy on the NinaPro DBl up to 90.07%.The experimental results and comparisons confirm the superiority of the proposed hybrid model for gesture recognition from the sEMG signals.展开更多
Surface EMG (electromyography) signal is a complex nonlinear signal with low signal to noise ratio (SNR). This paper is aimed at identifying different patterns of surface EMG signals according to fractal dimension. Tw...Surface EMG (electromyography) signal is a complex nonlinear signal with low signal to noise ratio (SNR). This paper is aimed at identifying different patterns of surface EMG signals according to fractal dimension. Two patterns of surface EMG signals are respectively acquired from the right forearm flexor of 30 healthy volunteers during right forearm supination (FS) or forearm pronation (FP). After the high frequency noise is filtered from surface EMG signal by a low-pass filter, fractal di-mension is calculated from the filtered surface EMG signal. The results showed that the fractal dimensions of filtered FS surface EMG signals and those of filtered FP surface EMG signals distribute in two different regions, so the fractal dimensions can rep-resent different patterns of surface EMG signals.展开更多
This paper provides a method to infer finger flexing motions using a 4-channel surface Electronyogram (sEMG). Surface EMGs are hannless to the humnan body and easily done. However, they do not reflect the activity o...This paper provides a method to infer finger flexing motions using a 4-channel surface Electronyogram (sEMG). Surface EMGs are hannless to the humnan body and easily done. However, they do not reflect the activity of specific nerves or muscles, unlike invasive EMCs. On the other hand, the non-invasive type is difficult to use for discriminating various motions while using only a small number of electrodes. Surface EMG data in this study were obtained from four electodes placed around the forearm. The motions were the flexion of each 5 single fingers (thumb, index finger, middle finger, ring finger, and little fingers). One subject was trained with these motions and another left was untrained. The maximum likelihood estimation method was used to infer the finger motion. Experimental results have showed that this method could be useful for recognizing finger motions.The average accuracy was as high as 95%.展开更多
Spectral energy distribution of surface EMG signal is often used but difficultly and effectively control artificial limb, because the spectral energy distribution changes in the process of limb actions. In this paper,...Spectral energy distribution of surface EMG signal is often used but difficultly and effectively control artificial limb, because the spectral energy distribution changes in the process of limb actions. In this paper, the general characteristics of surface EMG signal patterns were firstly characterized by spectral energy change. 13 healthy subjects were instructed to execute forearm supination (FS) and forearm pronation (FP) with their right foreanns when their forearm muscles were "fatigue" or "relaxed". All surface EMG signals were recorded from their right forearm flexor during their right forearm actions. Two sets of surface EMG signals were segmented from every surface EMG signal appropriately at preparing stage and acting stage. Relative wavelet packet energy (symbolized by pnp and pna respectively at preparing stage and acting stage, n denotes the nth frequency band) of surface EMG signal firstly was calculated and then, the difference (Pn = Pna-Pnp) were gained. The results showed that Pn from some frequency bands can effectively characterize the general characteristics of surface EMG signal patterns. Compared with Pn in other frequency bands, P4, the spectral energy change from 93.75 to 125 Hz, was more appropriately regarded as the features.展开更多
This paper introduced a novel, simple and ef-fective method to extract the general feature of two surface EMG (electromyography) signal patterns: forearm supination (FS) surface EMG signal and forearm pronation (FP) s...This paper introduced a novel, simple and ef-fective method to extract the general feature of two surface EMG (electromyography) signal patterns: forearm supination (FS) surface EMG signal and forearm pronation (FP) surface EMG signal. After surface EMG (SEMG) signal was decomposed to the fourth resolution level with wavelet packet transform (WPT), its whole scaling space (with frequencies in the interval (0Hz, 500Hz]) was divided into16 frequency bands (FB). Then wavelet coefficient entropy (WCE) of every FB was calculated and corre-spondingly marked with WCE(n) (from the nth FB, n=1,2,…16). Lastly, some WCE(n) were chosen to form WCE feature vector, which was used to distinguish FS surface EMG signals from FP surface EMG signals. The result showed that the WCE feather vector consisted of WCE(7) (187.25Hz, 218.75Hz) and WCE(8) (218.75Hz, 250Hz) can more effectively recog-nize FS and FP patterns than other WCE feature vector or the WPT feature vector which was gained by the combination of WPT and principal components analysis.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 60171006) and the National Basic Research Program (973) of China (No. 2005CB724303)
文摘An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often confronted with the problem of insufficient data points and noisy circumstances, which led to unsatisfactory results. Compared with fractal dimension as well as the standard ApEn, the improved ApEn can extract information underlying sEMG signals more efficiently and accu- rately. The method introduced here can also be applied to other medium-sized and noisy physiological signals.
基金Project (No. 2005CB724303) supported by the National Basic Re-search Program (973) of China
文摘This study is aimed at assessing muscle fatigue during a static contraction using multifractal analysis and found that the surface electromyographic (SEMG) signals characterized multiffactality during a static contraction. By applying the method of direct determination ofthef(a) singularity spectrum, the area of the multifractal spectrum of the SEMG signals was computed. The results showed that the spectrum area significantly increased during muscle fatigue. Therefore the area could be used as an assessor of muscle fatigue. Compared with the median frequency (MDF)--the most popular indicator of muscle fatigue, the spectrum area presented here showed higher sensitivity during a static contraction. So the singularity spectrum area is considered to be a more effective indicator than the MDF for estimating muscle fatigue.
基金supported by the Development of Sleep Disordered Breathing Detection and Auxiliary Regulation System Project(No.2019I1009)。
文摘The surface electromyography(sEMG)is one of the basic processing techniques to the gesture recognition because of its inherent advantages of easy collection and non-invasion.However,limited by feature extraction and classifier selection,the adaptability and accuracy of the conventional machine learning still need to promote with the increase of the input dimension and the number of output classifications.Moreover,due to the different characteristics of sEMG data and image data,the conventional convolutional neural network(CNN)have yet to fit sEMG signals.In this paper,a novel hybrid model combining CNN with the graph convolutional network(GCN)was constructed to improve the performance of the gesture recognition.Based on the characteristics of sEMG signal,GCN was introduced into the model through a joint voting network to extract the muscle synergy feature of the sEMG signal.Such strategy optimizes the structure and convolution kernel parameters of the residual network(ResNet)with the classification accuracy on the NinaPro DBl up to 90.07%.The experimental results and comparisons confirm the superiority of the proposed hybrid model for gesture recognition from the sEMG signals.
基金Project supported by the National Natural Science Foundation of China (No. 60171006)the National Basic Research Program (973) of China (No. 2005CB724303)
文摘Surface EMG (electromyography) signal is a complex nonlinear signal with low signal to noise ratio (SNR). This paper is aimed at identifying different patterns of surface EMG signals according to fractal dimension. Two patterns of surface EMG signals are respectively acquired from the right forearm flexor of 30 healthy volunteers during right forearm supination (FS) or forearm pronation (FP). After the high frequency noise is filtered from surface EMG signal by a low-pass filter, fractal di-mension is calculated from the filtered surface EMG signal. The results showed that the fractal dimensions of filtered FS surface EMG signals and those of filtered FP surface EMG signals distribute in two different regions, so the fractal dimensions can rep-resent different patterns of surface EMG signals.
基金supported by the The Ministry of Knowledge Economy,Koreaunder the ITRC(Information Technology Research Center)support programsupervised by the ⅡTA(Institute for Information Technology Advancement)ⅡTA-2008-C1090-0803-0006
文摘This paper provides a method to infer finger flexing motions using a 4-channel surface Electronyogram (sEMG). Surface EMGs are hannless to the humnan body and easily done. However, they do not reflect the activity of specific nerves or muscles, unlike invasive EMCs. On the other hand, the non-invasive type is difficult to use for discriminating various motions while using only a small number of electrodes. Surface EMG data in this study were obtained from four electodes placed around the forearm. The motions were the flexion of each 5 single fingers (thumb, index finger, middle finger, ring finger, and little fingers). One subject was trained with these motions and another left was untrained. The maximum likelihood estimation method was used to infer the finger motion. Experimental results have showed that this method could be useful for recognizing finger motions.The average accuracy was as high as 95%.
基金China 973 Project,Grant number:2005CB724303Yunnan Education Department Project,Grant number:03Y3081
文摘Spectral energy distribution of surface EMG signal is often used but difficultly and effectively control artificial limb, because the spectral energy distribution changes in the process of limb actions. In this paper, the general characteristics of surface EMG signal patterns were firstly characterized by spectral energy change. 13 healthy subjects were instructed to execute forearm supination (FS) and forearm pronation (FP) with their right foreanns when their forearm muscles were "fatigue" or "relaxed". All surface EMG signals were recorded from their right forearm flexor during their right forearm actions. Two sets of surface EMG signals were segmented from every surface EMG signal appropriately at preparing stage and acting stage. Relative wavelet packet energy (symbolized by pnp and pna respectively at preparing stage and acting stage, n denotes the nth frequency band) of surface EMG signal firstly was calculated and then, the difference (Pn = Pna-Pnp) were gained. The results showed that Pn from some frequency bands can effectively characterize the general characteristics of surface EMG signal patterns. Compared with Pn in other frequency bands, P4, the spectral energy change from 93.75 to 125 Hz, was more appropriately regarded as the features.
文摘This paper introduced a novel, simple and ef-fective method to extract the general feature of two surface EMG (electromyography) signal patterns: forearm supination (FS) surface EMG signal and forearm pronation (FP) surface EMG signal. After surface EMG (SEMG) signal was decomposed to the fourth resolution level with wavelet packet transform (WPT), its whole scaling space (with frequencies in the interval (0Hz, 500Hz]) was divided into16 frequency bands (FB). Then wavelet coefficient entropy (WCE) of every FB was calculated and corre-spondingly marked with WCE(n) (from the nth FB, n=1,2,…16). Lastly, some WCE(n) were chosen to form WCE feature vector, which was used to distinguish FS surface EMG signals from FP surface EMG signals. The result showed that the WCE feather vector consisted of WCE(7) (187.25Hz, 218.75Hz) and WCE(8) (218.75Hz, 250Hz) can more effectively recog-nize FS and FP patterns than other WCE feature vector or the WPT feature vector which was gained by the combination of WPT and principal components analysis.