Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carri...Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carried out on the Cu and Zr K-edge. Under reaction conditions, Cu remains metallic, while Zr is present in three types of coordination environment associated with 1) bulk ZrO2, 2) coordinatively saturated and 3) unsaturated Zr(Ⅳ) surface sites. The amount of coordinatively unsaturated Zr surface sites can be quantified by linear combination fit of reference X-Ray absorption near edge structure (XANES) spectra and its amount correlates with CH3OH formation rates, thus indicating the importance of Zr(Ⅳ) Lewis acid surface sites in driving the selectivity toward CH3OH. This finding is consistent with the proposed mechanism, where CO2 is hydrogenated at the interface between the Cu nanoparticles that split H2 and Zr(Ⅳ) surface sites that stabilizes reaction intermediates.展开更多
Fe304 was supported on mesoporous A12O3 or SiO2 (50 wt.%) using an incipient wetness impregnation method, and Fe304/A12O3 exhibited higher catalytic efficiency for the degradation of 2,4-dichlorophenoxyace- tic acid...Fe304 was supported on mesoporous A12O3 or SiO2 (50 wt.%) using an incipient wetness impregnation method, and Fe304/A12O3 exhibited higher catalytic efficiency for the degradation of 2,4-dichlorophenoxyace- tic acid andpara-chlorobenzoic acid aqueous solution with ozone. The effect and morphology of supported Fe304 on catalytic ozonation performance were investigated based on the characterization results of X-ray diffraction, X-ray photoelectron spectroscopy, BET analysis and Fourier transform infrared spectroscopy. The results indicated that the physical and chemical properties of the catalyst supports especially their Lewis acid sites had a significant influence on the catalytic activity. In comparison with SiO2, more Lewis acid sites existed on the surface of A12O3, resulting in higher catalytic ozonation activity. During the reaction process, no significant Fe ions release was observed. Moreover, Fe304/A12O3 exhibited stable structure and activity after successive cyclic experiments. The results indicated that the catalyst is a promising ozonation catalyst with magnetic separation in drinking water treatment.展开更多
Based on monolayer dispersion theory,Co_(3)O_(4)/ZSM-5 catalysts with different loadings have been prepared for selective catalytic reduction of nitrogen oxides by ammonia.Co_(3)O_(4)can spontaneously disperse on HZSM...Based on monolayer dispersion theory,Co_(3)O_(4)/ZSM-5 catalysts with different loadings have been prepared for selective catalytic reduction of nitrogen oxides by ammonia.Co_(3)O_(4)can spontaneously disperse on HZSM-5 support with a monolayer dispersion threshold of 0.061 mmol 100 m^(-2),equaling to a weight percentage around 4.5%.It has been revealed that the quantities of surface active oxygen(O_(2)^(-))and acid sites are crucial for the reaction,which can adsorb and activate NO_(x)and NH_(3)reactants effectively.Below the monolayer dispersion threshold,Co_(3)O_(4)is finely dispersed as sub-monolayers or monolayers and in an amorphous state,which is favorable to generate the two kinds of active sites,hence promoting the performance of ammonia selective catalytic reduction of nitrogen oxide.However,the formation of crystalline Co_(3)O_(4)above the capacity is harmful to the reaction performance.4%Co_(3)O_(4)/ZSM-5,the catalyst close to the monolayer dispersion capacity,possesses the most abundant active O_(2)^(-)species and acidic sites,thereby demonstrating the best reaction performance in all the samples.It is proposed the optimal Co_(3)O_(4)/ZSM-5 catalyst can be prepared by loading the capacity amount of Co_(3)O_(4)onto HZSM-5 support.展开更多
Cu/ZSM-5 and CeO_2-modified Cu/ZSM-5 catalysts were prepared by a wetness impregnation method. The addition of CeO_2 was found to enhance the NO_x selective catalytic reduction(SCR) activity of the catalyst at low t...Cu/ZSM-5 and CeO_2-modified Cu/ZSM-5 catalysts were prepared by a wetness impregnation method. The addition of CeO_2 was found to enhance the NO_x selective catalytic reduction(SCR) activity of the catalyst at low temperatures, but the high-temperature activity was weakened. The catalysts were characterized by X-ray diffraction(XRD), nitrogen physisorption, inductively coupled plasma optical emission spectrometry(ICP-OES), X-ray photoelectron spectroscopy(XPS), electron paramagnetic resonance(EPR), H_2 temperature-programmed reduction(TPR) and NH_3 temperature-programmed desorption(TPD). The results showed that more CuO clusters instead of isolated Cu^(2+) species were obtained on the modified catalyst. These active CuO clusters, as well as the Cu-Ce synergistic effect, improved the redox property of the catalyst and low-temperatures SCR activity via promoting the oxidation of NO to NO_2 and fast SCR reaction. The loss in high-temperatures activity was attributed to the enhanced competitive oxidation of NH_3 by O_2 and decreased surface acidity of the catalyst.展开更多
基金E.L.,K.L.,P.W.,and S.T.are supported by the SCCER-Heat and Energy Storage program
文摘Cu/ZrO2/SiO2 are efficient catalysts for the selective hydrogenation of CO2 to CH3OH. In order to understand the role of ZrO2 in these mixed-oxides based catalysts, in situ X-ray absorption spectroscopy has been carried out on the Cu and Zr K-edge. Under reaction conditions, Cu remains metallic, while Zr is present in three types of coordination environment associated with 1) bulk ZrO2, 2) coordinatively saturated and 3) unsaturated Zr(Ⅳ) surface sites. The amount of coordinatively unsaturated Zr surface sites can be quantified by linear combination fit of reference X-Ray absorption near edge structure (XANES) spectra and its amount correlates with CH3OH formation rates, thus indicating the importance of Zr(Ⅳ) Lewis acid surface sites in driving the selectivity toward CH3OH. This finding is consistent with the proposed mechanism, where CO2 is hydrogenated at the interface between the Cu nanoparticles that split H2 and Zr(Ⅳ) surface sites that stabilizes reaction intermediates.
文摘Fe304 was supported on mesoporous A12O3 or SiO2 (50 wt.%) using an incipient wetness impregnation method, and Fe304/A12O3 exhibited higher catalytic efficiency for the degradation of 2,4-dichlorophenoxyace- tic acid andpara-chlorobenzoic acid aqueous solution with ozone. The effect and morphology of supported Fe304 on catalytic ozonation performance were investigated based on the characterization results of X-ray diffraction, X-ray photoelectron spectroscopy, BET analysis and Fourier transform infrared spectroscopy. The results indicated that the physical and chemical properties of the catalyst supports especially their Lewis acid sites had a significant influence on the catalytic activity. In comparison with SiO2, more Lewis acid sites existed on the surface of A12O3, resulting in higher catalytic ozonation activity. During the reaction process, no significant Fe ions release was observed. Moreover, Fe304/A12O3 exhibited stable structure and activity after successive cyclic experiments. The results indicated that the catalyst is a promising ozonation catalyst with magnetic separation in drinking water treatment.
基金the financial supporting by the National Natural Science Foundation of China(Grant Nos.21962009,22172071,22102069,22062013)the Natural Science Foundation of Jiangxi Province(Grant Nos.20202BAB203006,20181ACB20005)the Key Laboratory Foundation of Jiangxi Province for Environment and Energy Catalysis(Grant No.20181BCD40004).
文摘Based on monolayer dispersion theory,Co_(3)O_(4)/ZSM-5 catalysts with different loadings have been prepared for selective catalytic reduction of nitrogen oxides by ammonia.Co_(3)O_(4)can spontaneously disperse on HZSM-5 support with a monolayer dispersion threshold of 0.061 mmol 100 m^(-2),equaling to a weight percentage around 4.5%.It has been revealed that the quantities of surface active oxygen(O_(2)^(-))and acid sites are crucial for the reaction,which can adsorb and activate NO_(x)and NH_(3)reactants effectively.Below the monolayer dispersion threshold,Co_(3)O_(4)is finely dispersed as sub-monolayers or monolayers and in an amorphous state,which is favorable to generate the two kinds of active sites,hence promoting the performance of ammonia selective catalytic reduction of nitrogen oxide.However,the formation of crystalline Co_(3)O_(4)above the capacity is harmful to the reaction performance.4%Co_(3)O_(4)/ZSM-5,the catalyst close to the monolayer dispersion capacity,possesses the most abundant active O_(2)^(-)species and acidic sites,thereby demonstrating the best reaction performance in all the samples.It is proposed the optimal Co_(3)O_(4)/ZSM-5 catalyst can be prepared by loading the capacity amount of Co_(3)O_(4)onto HZSM-5 support.
基金Project supported by the the National Natural Science Foundation of China(51372137)Ministry of Science and Technology,China(2015AA034603)
文摘Cu/ZSM-5 and CeO_2-modified Cu/ZSM-5 catalysts were prepared by a wetness impregnation method. The addition of CeO_2 was found to enhance the NO_x selective catalytic reduction(SCR) activity of the catalyst at low temperatures, but the high-temperature activity was weakened. The catalysts were characterized by X-ray diffraction(XRD), nitrogen physisorption, inductively coupled plasma optical emission spectrometry(ICP-OES), X-ray photoelectron spectroscopy(XPS), electron paramagnetic resonance(EPR), H_2 temperature-programmed reduction(TPR) and NH_3 temperature-programmed desorption(TPD). The results showed that more CuO clusters instead of isolated Cu^(2+) species were obtained on the modified catalyst. These active CuO clusters, as well as the Cu-Ce synergistic effect, improved the redox property of the catalyst and low-temperatures SCR activity via promoting the oxidation of NO to NO_2 and fast SCR reaction. The loss in high-temperatures activity was attributed to the enhanced competitive oxidation of NH_3 by O_2 and decreased surface acidity of the catalyst.