ZnO films on R-sapphire substrates are prepared and characterized by x-ray diffraction and scanning electron microscopy, which indicate that the thin films are well crystallized with (1120) texture. Love wave and Ra...ZnO films on R-sapphire substrates are prepared and characterized by x-ray diffraction and scanning electron microscopy, which indicate that the thin films are well crystallized with (1120) texture. Love wave and Rayleigh wave are used for fabrications of humidity sensors, which are excited in [1100] and [0001] directions of the (1120) ZnO piezoelectric films, respectively. The experimental results show that both kinds of sensors have good humidity response and repeatability, and the performances of the Love wave sensors are better than those of the Rayleigh wave sensors at room temperature. Moreover, the theoretical calculations of the mass sensitivity of the sensors are a/so carried out and the calculated results are in good agreement with the experimental measurements.展开更多
Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into ...Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into various sensors and microfluidics for sensing/monitoring and lab-on-chip applications. We report the fabrication of high sensitivity SAW UV sensors based on piezoelectric (PE) ZnO thin films deposited on glass substrates. The sensors were fabricated and their performances against the post-deposition annealing condition were investigated. It was found that the UV-light sensitivity is improved by more than one order of magnitude after annealing. The frequency response increases significantly and the response becomes much faster. The optimized devices also show a small temperature coefficient of frequency and excellent repeatability and stability, demonstrating its potential for UV-light sensing application.展开更多
The surface acoustic wave (SAW) technique is a precise and nondestructive method to detect the mechanical charac- teristics of the thin low dielectric constant (low-k) film by matching the theoretical dispersion c...The surface acoustic wave (SAW) technique is a precise and nondestructive method to detect the mechanical charac- teristics of the thin low dielectric constant (low-k) film by matching the theoretical dispersion curve with the experimental dispersion curve. In this paper, the influence of sample roughness on the precision of SAW mechanical detection is inves- tigated in detail. Random roughness values at the surface of low-k film and at the interface between this low-k film and the substrate are obtained by the Monte Carlo method. The dispersive characteristic of SAW on the layered structure with rough surface and rough interface is modeled by numerical simulation of finite element method. The Young's moduli of the Black DiamondTM samples with different roughness values are determined by SAWs in the experiment. The results show that the influence of sample roughness is very small when the root-mean-square (RMS) of roughness is smaller than 50 nm and correlation length is smaller than 20 μm. This study indicates that the SAW technique is reliable and precise in the nondestructive mechanical detection for low-k films.展开更多
Surface acoustic wave(SAW) devices have been utilized for the sensing of chemical and biological phenomena in microscale for the past few decades. In this study, SAW device was fabricated by electrospinning poly(vinyl...Surface acoustic wave(SAW) devices have been utilized for the sensing of chemical and biological phenomena in microscale for the past few decades. In this study, SAW device was fabricated by electrospinning poly(vinylidenefluoride-co-trifluoroethylene)(P(VDF-TrFE)) incorporated with zinc oxide(ZnO) nanoparticles over the delay line area of the SAW device. The morphology, composition, and crystallinity of P(VDF-TrFE)/ZnO nanocomposites were investigated. After measurement of SAW frequency response, it was found that the insertion loss of the SAW devices incorporated with ZnO nanoparticles was much less than that of the neat polymer-deposited device. The fabricated device was expected to be used in acoustic biosensors to detect and quantify the cell proliferation in cell culture systems.展开更多
(1120)ZnO film/R-sapphire substrate structure is promising for high frequency acoustic wave devices. The propagation characteristics of SAWs, including the Rayleigh waves along [0001] direction and Love waves along ...(1120)ZnO film/R-sapphire substrate structure is promising for high frequency acoustic wave devices. The propagation characteristics of SAWs, including the Rayleigh waves along [0001] direction and Love waves along [1100] direction, are investigated by using 3 dimensional finite element method (3D-FEM). The phase velocity (vp), electromechanical coupling coefficient (k2), temperature coefficient of frequency (TCF) and reflection coefficient (r) of Rayleigh wave and Love wave devices are theoretically analyzed. Furthermore, the influences of ZnO films with different crystal orientation on SAW properties are also investigated. The results show that the 1st Rayleigh wave has an exceedingly large/d of 4.95% in (90°, 90°, 0°) (1120)ZnO film/R-sapphire substrate associated with a phase velocity of 5300 m/s; and the 0th Love wave in (0°, 90°, 0°) (1120)ZnO film/R-sapphire substrate has a maximum k2 of 3.86% associated with a phase velocity of 3400 m/s. And (1120)ZnO film/R-sapphire substrate structures can be used to design temperature-compensated and wide-band SAW devices. All of the results indicate that the performances of SAW devices can be optimized by suitably selecting ZnO films with different thickness and crystal orientations deposited on R-sapphire substrates.展开更多
Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass ...Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass substrates, the simulation results confirm that the Rayleigh waves along the [0001] direction and Love waves along the [1ˉ100] direction are successfully excited in the multilayered structures. Next, the crystal orientations of the ZnO films are rotated, and the influences of ZnO films with different crystal orientations on SAW characterizations, including the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency, are investigated. The results show that at appropriate h/λ, Rayleigh wave has a maximum k^2 of 2.4% in(90°, 56.5°, 0°) ZnO film/glass substrate structure; Love wave has a maximum k^2 of 3.81% in(56°, 90°, 0°) ZnO film/glass substrate structure. Meantime, for Rayleigh wave and Love wave devices, zero temperature coefficient of frequency(TCF) can be achieved at appropriate ratio of film thickness to SAW wavelength. These results show that SAW devices with higher k^2 or lower TCF can be fabricated by flexibly selecting the crystal orientations of ZnO films on glass substrates.展开更多
In order to obtain both high electromigration (EM) reliability and free-dimensional control in high-frequency surface acoustic wave (SAW) devices, 4-layered Ti/Al-Mo/Ti/Al-Mo electrode films were investigated on 1...In order to obtain both high electromigration (EM) reliability and free-dimensional control in high-frequency surface acoustic wave (SAW) devices, 4-layered Ti/Al-Mo/Ti/Al-Mo electrode films were investigated on 128° Y-X LiNbO3 substrates by sputtering deposition. The resuits indicated that the 4-layered films had an improved EM reliability compared to conventional Al-0.5wt.%Cu films. Their lifetime is approximately three times longer than that of the Al-0.5wt.%Cu films tested at a current density of 5 x 107 A/cm^2 and a temperature of 200℃. Moreover, the 4-layered films were easily etched in reactive ion etching and fine-dimensional control was realized during the pattern replication for high-frequency SAW devices. For the 4-layered films, an optimum Mo quantity and sputtering parameters were very significant for high EM reliability.展开更多
The structure characteristic and electric performance of ZnO film deposited on nucleation side of free-standing diamond substrates under different heating temperatures (Th) of substrate and working pressures (p) were ...The structure characteristic and electric performance of ZnO film deposited on nucleation side of free-standing diamond substrates under different heating temperatures (Th) of substrate and working pressures (p) were studied. The structure of the ZnO films tested by X-ray diffraction shows that ZnO film of high c-axis orientation is deposited on the nucleation side of free-standing diamond substrate which is extremely smooth when Th=250 ℃ and p=0.4 Pa. After annealing at 480 ℃ in N2 atmosphere, the SEM and the AFM analyses demonstrate that the c-axis orientation of ZnO film is obviously enhanced. The resistivity of ZnO films also increases up to 8×105 ■·cm which is observed by I?V test.展开更多
Surface acoustic wave(SAW) resonators with Pt/AlN/Si and Pt/AlN/Pt/Si configurations were fabricated by lift-off photolithography techniques. High-temperature performances of both configurations were investigated fo...Surface acoustic wave(SAW) resonators with Pt/AlN/Si and Pt/AlN/Pt/Si configurations were fabricated by lift-off photolithography techniques. High-temperature performances of both configurations were investigated for temperature sensor applications. AlN films grown on Ptcoated Si substrates exhibit a lower(002) preferred orientation than those grown on Si substrates. The center frequencies of Pt/AlN/Si and Pt/AlN/Pt/Si configurations at room temperature are 424.1 and 456.4 MHz, respectively.The SAW was limited by Pt bottom electrodes to propagate in AlN layer. The temperature coefficient of frequency(TCF) values of Pt/AlN/Si and Pt/AlN/Pt/Si configurations are-51.6 × 10^-6 and-69.2 × 10^-6℃^-1, respectively.Compared with that of Pt/AlN/Si configuration, the TCF value of Pt/AlN/Pt/Si configuration decreases by 34.1 %.AlN resonator with the Pt floating bottom electrodes provides a large, quasi-constant temperature sensitivity which is suitable for temperature sensor applications.展开更多
Apnoea,a major sleep disorder,affects many adults and causes several issues,such as fatigue,high blood pressure,liver conditions,increased risk of type II diabetes,and heart problems.Therefore,advanced monitoring and ...Apnoea,a major sleep disorder,affects many adults and causes several issues,such as fatigue,high blood pressure,liver conditions,increased risk of type II diabetes,and heart problems.Therefore,advanced monitoring and diagnosing tools of apnoea disorders are needed to facilitate better treatment,with advantages such as accuracy,comfort of use,cost effectiveness,and embedded computation capabilities to recognise,store,process,and transmit time series data.In this work we present an adaptation of our apnoea-Pi open-source surface acoustic wave(SAW)platform(Apnoea-Pi)to monitor and recognise apnoea in patients.The platform is based on a thin-film SAW device using bimorph ZnO and Al structures,including those fabricated as Al foils or plates,to achieve breath tracking based on humidity and temperature changes.We applied open-source electronics and provided embedded computing characteristics for signal processing,data recognition,storage,and transmission of breath signals.We show that the thin-film SAW device out-performed standard and off-the-shelf capacitive electronic sensors in terms of their response and accuracy for human breath-tracking purposes.This in combination with embedded electronics makes a suitable platform for human breath monitoring and sleep disorder recognition.展开更多
Bulk acoustic wave resonators with piezoelectric films have been widely explored for the small size and high quality factor (Q) at GHz. This paper describes a high overtone bulk acoustic resonator (HBAR) based on ...Bulk acoustic wave resonators with piezoelectric films have been widely explored for the small size and high quality factor (Q) at GHz. This paper describes a high overtone bulk acoustic resonator (HBAR) based on AI/ZnO/AI sandwich layers and c-axis sapphire substrate. ZnO film with high quality c-axis orientation has been obtained using DC magnetron sputtering. The fabricated HBAR presents high Q at the multiple resonances from a 0.5-4.0 GHz wide band with a total size (including the contact pads) of 0.6 mm×0.3 mm×0.4 mm, The device exhibits the best acoustic coupling at around 2.4 GHz, which agrees with the simulation results based on the one-dimensional Mason equivalent circuit model. The HBAR also demonstrates Q values of 30 000, 25 000, and 6500 at 1.49, 2.43, and 3.40 GHz, respectively. It is indicated that the HBAR has potential applications for the low phase noise high frequency oscillator or microwave signal source.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174142,11304160 and 11404147the National Basic Research Program of China under Grant No 2012CB921504+2 种基金the PAPD Projectthe Natural Science Foundation of Jiangsu Higher Education Institutions of China under Grant No 13KJB140008the Foundation of Nanjing University of Posts and Telecommunications under Grant No NY213018
文摘ZnO films on R-sapphire substrates are prepared and characterized by x-ray diffraction and scanning electron microscopy, which indicate that the thin films are well crystallized with (1120) texture. Love wave and Rayleigh wave are used for fabrications of humidity sensors, which are excited in [1100] and [0001] directions of the (1120) ZnO piezoelectric films, respectively. The experimental results show that both kinds of sensors have good humidity response and repeatability, and the performances of the Love wave sensors are better than those of the Rayleigh wave sensors at room temperature. Moreover, the theoretical calculations of the mass sensitivity of the sensors are a/so carried out and the calculated results are in good agreement with the experimental measurements.
基金supported by the National Natural Science Foundation of China(Grant Nos.61274037 and 61301046)the Research Fund for the Doctoral Program of Higher Education of China(Grant Nos.20120101110031 and 20120101110054)
文摘Surface acoustic wave (SAW) resonators are a type of ultraviolet (UV) light sensors with high sensitivity, and they have been extensively studied. Transparent SAW devices are very useful and can be developed into various sensors and microfluidics for sensing/monitoring and lab-on-chip applications. We report the fabrication of high sensitivity SAW UV sensors based on piezoelectric (PE) ZnO thin films deposited on glass substrates. The sensors were fabricated and their performances against the post-deposition annealing condition were investigated. It was found that the UV-light sensitivity is improved by more than one order of magnitude after annealing. The frequency response increases significantly and the response becomes much faster. The optimized devices also show a small temperature coefficient of frequency and excellent repeatability and stability, demonstrating its potential for UV-light sensing application.
基金Project supported by the National Natural Science Foundation of China(Grant No.60876072)the Tianjin Research Program of Application Foundation and Advanced Technology,China(Grant No.10JCZDJC15500)
文摘The surface acoustic wave (SAW) technique is a precise and nondestructive method to detect the mechanical charac- teristics of the thin low dielectric constant (low-k) film by matching the theoretical dispersion curve with the experimental dispersion curve. In this paper, the influence of sample roughness on the precision of SAW mechanical detection is inves- tigated in detail. Random roughness values at the surface of low-k film and at the interface between this low-k film and the substrate are obtained by the Monte Carlo method. The dispersive characteristic of SAW on the layered structure with rough surface and rough interface is modeled by numerical simulation of finite element method. The Young's moduli of the Black DiamondTM samples with different roughness values are determined by SAWs in the experiment. The results show that the influence of sample roughness is very small when the root-mean-square (RMS) of roughness is smaller than 50 nm and correlation length is smaller than 20 μm. This study indicates that the SAW technique is reliable and precise in the nondestructive mechanical detection for low-k films.
基金the Agence Nationale de la Recherche for the financial support (ANR-12-BS09021)the Department of Biotechnology (DBT), Government of India, New Delhi, for the financial support through MSUB IPLSARE Program (BT/PR4800/INF/22/152/2012)
文摘Surface acoustic wave(SAW) devices have been utilized for the sensing of chemical and biological phenomena in microscale for the past few decades. In this study, SAW device was fabricated by electrospinning poly(vinylidenefluoride-co-trifluoroethylene)(P(VDF-TrFE)) incorporated with zinc oxide(ZnO) nanoparticles over the delay line area of the SAW device. The morphology, composition, and crystallinity of P(VDF-TrFE)/ZnO nanocomposites were investigated. After measurement of SAW frequency response, it was found that the insertion loss of the SAW devices incorporated with ZnO nanoparticles was much less than that of the neat polymer-deposited device. The fabricated device was expected to be used in acoustic biosensors to detect and quantify the cell proliferation in cell culture systems.
基金supported by the National Natural Science Foundation of China(Grant No.11304160)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(Grant No.13KJB140008)the Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY213018)
文摘(1120)ZnO film/R-sapphire substrate structure is promising for high frequency acoustic wave devices. The propagation characteristics of SAWs, including the Rayleigh waves along [0001] direction and Love waves along [1100] direction, are investigated by using 3 dimensional finite element method (3D-FEM). The phase velocity (vp), electromechanical coupling coefficient (k2), temperature coefficient of frequency (TCF) and reflection coefficient (r) of Rayleigh wave and Love wave devices are theoretically analyzed. Furthermore, the influences of ZnO films with different crystal orientation on SAW properties are also investigated. The results show that the 1st Rayleigh wave has an exceedingly large/d of 4.95% in (90°, 90°, 0°) (1120)ZnO film/R-sapphire substrate associated with a phase velocity of 5300 m/s; and the 0th Love wave in (0°, 90°, 0°) (1120)ZnO film/R-sapphire substrate has a maximum k2 of 3.86% associated with a phase velocity of 3400 m/s. And (1120)ZnO film/R-sapphire substrate structures can be used to design temperature-compensated and wide-band SAW devices. All of the results indicate that the performances of SAW devices can be optimized by suitably selecting ZnO films with different thickness and crystal orientations deposited on R-sapphire substrates.
基金supported by the National Natural Science Foundation of China(Grant No.11304160)the Natural Science Foundation of Jiangsu Provincial Higher Education Institutions,China(Grant No.13KJB140008)the Foundation of Nanjing University of Posts and Telecommunications,China(Grant No.NY213018)
文摘Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass substrates, the simulation results confirm that the Rayleigh waves along the [0001] direction and Love waves along the [1ˉ100] direction are successfully excited in the multilayered structures. Next, the crystal orientations of the ZnO films are rotated, and the influences of ZnO films with different crystal orientations on SAW characterizations, including the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency, are investigated. The results show that at appropriate h/λ, Rayleigh wave has a maximum k^2 of 2.4% in(90°, 56.5°, 0°) ZnO film/glass substrate structure; Love wave has a maximum k^2 of 3.81% in(56°, 90°, 0°) ZnO film/glass substrate structure. Meantime, for Rayleigh wave and Love wave devices, zero temperature coefficient of frequency(TCF) can be achieved at appropriate ratio of film thickness to SAW wavelength. These results show that SAW devices with higher k^2 or lower TCF can be fabricated by flexibly selecting the crystal orientations of ZnO films on glass substrates.
基金supported by the National Basic Research Program of China (Nos.2009CB939703 and 2006CB806204)the National High Technology Research and Development Program of China (No.2009AA03Z444)
文摘In order to obtain both high electromigration (EM) reliability and free-dimensional control in high-frequency surface acoustic wave (SAW) devices, 4-layered Ti/Al-Mo/Ti/Al-Mo electrode films were investigated on 128° Y-X LiNbO3 substrates by sputtering deposition. The resuits indicated that the 4-layered films had an improved EM reliability compared to conventional Al-0.5wt.%Cu films. Their lifetime is approximately three times longer than that of the Al-0.5wt.%Cu films tested at a current density of 5 x 107 A/cm^2 and a temperature of 200℃. Moreover, the 4-layered films were easily etched in reactive ion etching and fine-dimensional control was realized during the pattern replication for high-frequency SAW devices. For the 4-layered films, an optimum Mo quantity and sputtering parameters were very significant for high EM reliability.
基金Project (60577040) supported by the National Natural Science Foundation of China Project (0404) supported by the Shanghai Foundation of Applied Materials Research and Development+1 种基金 Projects(0452nm051, 05nm05046) supported by the Nano-technology Project of Shanghai Project (T0101) supported by the Shanghai Leading Academic Disciplines
文摘The structure characteristic and electric performance of ZnO film deposited on nucleation side of free-standing diamond substrates under different heating temperatures (Th) of substrate and working pressures (p) were studied. The structure of the ZnO films tested by X-ray diffraction shows that ZnO film of high c-axis orientation is deposited on the nucleation side of free-standing diamond substrate which is extremely smooth when Th=250 ℃ and p=0.4 Pa. After annealing at 480 ℃ in N2 atmosphere, the SEM and the AFM analyses demonstrate that the c-axis orientation of ZnO film is obviously enhanced. The resistivity of ZnO films also increases up to 8×105 ■·cm which is observed by I?V test.
基金financially supported by the National Nature Science Foundation of China (No. 61223002)Sichuan Youth Science and Technology Innovation Research Team Funding (No. 2011JTD0006)
文摘Surface acoustic wave(SAW) resonators with Pt/AlN/Si and Pt/AlN/Pt/Si configurations were fabricated by lift-off photolithography techniques. High-temperature performances of both configurations were investigated for temperature sensor applications. AlN films grown on Ptcoated Si substrates exhibit a lower(002) preferred orientation than those grown on Si substrates. The center frequencies of Pt/AlN/Si and Pt/AlN/Pt/Si configurations at room temperature are 424.1 and 456.4 MHz, respectively.The SAW was limited by Pt bottom electrodes to propagate in AlN layer. The temperature coefficient of frequency(TCF) values of Pt/AlN/Si and Pt/AlN/Pt/Si configurations are-51.6 × 10^-6 and-69.2 × 10^-6℃^-1, respectively.Compared with that of Pt/AlN/Si configuration, the TCF value of Pt/AlN/Pt/Si configuration decreases by 34.1 %.AlN resonator with the Pt floating bottom electrodes provides a large, quasi-constant temperature sensitivity which is suitable for temperature sensor applications.
基金financially supported by the UK Engineering and Physical Sciences Research Council (EPSRC) under grant EP/P018998/1the UK Fluidic Network Special Interest Group of Acoustofluidics (EP/N032861/1).
文摘Apnoea,a major sleep disorder,affects many adults and causes several issues,such as fatigue,high blood pressure,liver conditions,increased risk of type II diabetes,and heart problems.Therefore,advanced monitoring and diagnosing tools of apnoea disorders are needed to facilitate better treatment,with advantages such as accuracy,comfort of use,cost effectiveness,and embedded computation capabilities to recognise,store,process,and transmit time series data.In this work we present an adaptation of our apnoea-Pi open-source surface acoustic wave(SAW)platform(Apnoea-Pi)to monitor and recognise apnoea in patients.The platform is based on a thin-film SAW device using bimorph ZnO and Al structures,including those fabricated as Al foils or plates,to achieve breath tracking based on humidity and temperature changes.We applied open-source electronics and provided embedded computing characteristics for signal processing,data recognition,storage,and transmission of breath signals.We show that the thin-film SAW device out-performed standard and off-the-shelf capacitive electronic sensors in terms of their response and accuracy for human breath-tracking purposes.This in combination with embedded electronics makes a suitable platform for human breath monitoring and sleep disorder recognition.
基金Project (Nos. 11074274 and 11174319) supported by the National Natural Science Foundation of China
文摘Bulk acoustic wave resonators with piezoelectric films have been widely explored for the small size and high quality factor (Q) at GHz. This paper describes a high overtone bulk acoustic resonator (HBAR) based on AI/ZnO/AI sandwich layers and c-axis sapphire substrate. ZnO film with high quality c-axis orientation has been obtained using DC magnetron sputtering. The fabricated HBAR presents high Q at the multiple resonances from a 0.5-4.0 GHz wide band with a total size (including the contact pads) of 0.6 mm×0.3 mm×0.4 mm, The device exhibits the best acoustic coupling at around 2.4 GHz, which agrees with the simulation results based on the one-dimensional Mason equivalent circuit model. The HBAR also demonstrates Q values of 30 000, 25 000, and 6500 at 1.49, 2.43, and 3.40 GHz, respectively. It is indicated that the HBAR has potential applications for the low phase noise high frequency oscillator or microwave signal source.