One-port surface acoustic wave resonators(SAWRs) are fabricated on semi-insulating high-quality bulk GaN and GaN film substrates, respectively. The semi-insulating GaN substrates are grown by hydride vapor phase epita...One-port surface acoustic wave resonators(SAWRs) are fabricated on semi-insulating high-quality bulk GaN and GaN film substrates, respectively. The semi-insulating GaN substrates are grown by hydride vapor phase epitaxy(HVPE)and doped with Fe. The anisotropy of Rayleigh propagation and the electromechanical coupling coefficient in Fe-doped GaN are investigated. The difference in resonance frequency between the SAWs between [1120] GaN and [1100] GaN is about 0.25% for the Rayleigh propagation mode, which is smaller than that of non-intentionally doped GaN film(~1%)reported in the literature. The electromechanical coupling coefficient of Fe-doped GaN is about 3.03%, which is higher than that of non-intentionally doped GaN film. The one-port SAWR fabricated on an 8-μm Fe-doped GaN/sapphire substrate has a quality factor of 2050, and that fabricated on Fe-doped bulk GaN has a quality factor as high as 3650. All of our results indicate that high-quality bulk GaN is a very promising material for application in SAW devices.展开更多
Simple and efficient surface acoustic wave (SAW) two-port resonators with low insertion loss and high Q-values on ST-X quartz substrate using a corrosion-proof A1/Au-stripe electrode structure are developed for gas ...Simple and efficient surface acoustic wave (SAW) two-port resonators with low insertion loss and high Q-values on ST-X quartz substrate using a corrosion-proof A1/Au-stripe electrode structure are developed for gas sensing. It was composed of two shorted grating reflectors and adjacent intedigital transducers (IDT), and an active metal film in the cavity between the IDTs for the sensitive film coating. The devices are expected to provide good protection towards metal electrode for gas sensors application in chemically reactive environments. Excellent device performance as low insertion loss, high Q factor and single-mode are achieved by carefully selecting the metallic electrode thickness, cavity length and acoustic aperture. Prior to fabrication, the coupling of modes (COM) model was performed for device simulation to determine the optimal design parameters. The fabricated single-mode SAW resonator at operation frequency of 300 MHz range exhibits matched insertion loss of ~6.5 dB and loaded Q factor in the 3000 range. Using the fabricated resonator as the feedback element, a duaresonator-oscillator with excellent frequency stability (0.1 ppm) was developed and evaluated experimentally, and it is significant for performance improvement of SAW gas sensor.展开更多
Surface acoustic wave (SAW) sensors and micro-electromechanical system (MEMS) technology provide a promising solution for measurement in harsh environments such as gas turbines. In this paper, a SAW resonator (s...Surface acoustic wave (SAW) sensors and micro-electromechanical system (MEMS) technology provide a promising solution for measurement in harsh environments such as gas turbines. In this paper, a SAW resonator (size: 1107μm× 721 μm) based on the AlN/4H-SiC multilayer structure is designed and simulated. A MEMS-compatible fabrication process is employed to fabricate the resonator. The results show that highly c-axis-oriented AlN thin films deposited on the 4H-SiC substrate are obtained, with that the diffraction peak of AlN is 36.10° and the lowest full width at half maximum (FWHM) value is only 1.19°. The test results of the network analyzer are consistent with the simulation curve, which is very encouraging and indicates that our work is a significant attempt to solve the measurement problems mainly including high temperature stability of sensitive structures and the heat transmission of leads in harsh environments. It is essential to get the best performance of SAW resonator, optimize and characterize the behaviors in high temperatures in future research.展开更多
Surface acoustic wave(SAW)resonator with outstanding quality factors of 4829/6775 at the resonant/anti-resonant frequencies has been demonstrated on C-doped semi-insulating bulk GaN.The impact of device parameters inc...Surface acoustic wave(SAW)resonator with outstanding quality factors of 4829/6775 at the resonant/anti-resonant frequencies has been demonstrated on C-doped semi-insulating bulk GaN.The impact of device parameters including aspect ratio of length to width of resonators,number of interdigital transducers,and acoustic propagation direction on resonator performance have been studied.For the first time,we demonstrate wireless temperature sensing from 21.6 to 120℃ with a stable temperature coefficient of frequency of–24.3 ppm/℃ on bulk GaN-based SAW resonators.展开更多
It is generally known that surface acoustic waves, or Rayleigh waves, have different mode shapes in infinite plates. To be precise, there are both exponentially decaying and growing components in plates appearing in p...It is generally known that surface acoustic waves, or Rayleigh waves, have different mode shapes in infinite plates. To be precise, there are both exponentially decaying and growing components in plates appearing in pairs, representing symmetric and antisymmentric modes in a plate. As the plate thickness increases, the combined modes will approach the Rayleigh mode in a semi-infinite solid, exhibiting surface acoustic wave deformation and velocity. In this study, the two-dimensional theory for surface acoustic waves in finite plates is extended to include the exponentially growing modes in the expansion function. With these extra equations, we study the surface acoustic waves in a plate with different thickness to examine the coupling of the exponentially decaying and growing modes. It is found that for small thick- ness, the two groups of waves are strongly coupled, showing the significance of including the effect of thickness in analysis. As the thickness increases to certain values, such as more than five wavelengths, the exponentially decaying modes alone will be able to predict vibrations of surface acoustic wave modes accurately, thus simplifying the equations and solutions significantly.展开更多
This paper discusses the validity of (adaptive) Lagrange generalized plain finite element method (FEM) and plate element method for accurate analysis of acoustic waves in multi-layered piezoelectric structures with ti...This paper discusses the validity of (adaptive) Lagrange generalized plain finite element method (FEM) and plate element method for accurate analysis of acoustic waves in multi-layered piezoelectric structures with tiny interfaces between metal electrodes and surface mounted piezoelectric substrates. We have come to conclusion that the quantitative relationships between the acoustic and electric fields in a piezoelectric structure can be accurately determined through the proposed finite element methods. The higher-order Lagrange FEM proposed for dynamic piezoelectric computation is proved to be very accurate (prescribed relative error 0.02% - 0.04% ) and a great improvement in convergence accuracy over the higher order Mindlin plate element method for piezoelectric structural analysis due to the assumptions and corrections in the plate theories.The converged lagrange finite element methods are compared with the plate element methods and the computedresults are in good agreement with available exact and experimental data. The adaptive Lagrange finite elementmethods and a new FEA computer program developed for macro- and micro-scale analyses are reviewed, and recently extended with great potential to high-precision nano-scale analysis in this paper and the similarities between piezoelectric and seismic wave propagations in layered structures and plates are stressed.展开更多
We study the acoustomagnetoelectric (AME) effect in two-dimensional graphene with an energy bandgap using the semiclassical Boltzmann transport equation within the hypersound regime, (where represents the acoustic wav...We study the acoustomagnetoelectric (AME) effect in two-dimensional graphene with an energy bandgap using the semiclassical Boltzmann transport equation within the hypersound regime, (where represents the acoustic wavenumber and is the mean free path of the electron). The Boltzmann transport equation and other relevant equations were solved analytically to obtain an expression for the AME current density, consisting of longitudinal and Hall components. Our numerical results indicate that both components of the AME current densities display oscillatory behaviour. Furthermore, geometric resonances and Weiss oscillations were each defined using the relationship between the current density and Surface Acoustic Wave (SAW) frequency and the inverse of the applied magnetic field, respectively. Our results show that the AME current density of bandgap graphene, which can be controlled to suit a particular electronic device application, is smaller than that of (gapless) graphene and is therefore, more suited for nanophotonic device applications.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFB0403002)the National Science Fund for Distinguished Young Scholars,China(Grant No.Y3CHC11001)the National Natural Science Foundation of China(Grant No.11604368)
文摘One-port surface acoustic wave resonators(SAWRs) are fabricated on semi-insulating high-quality bulk GaN and GaN film substrates, respectively. The semi-insulating GaN substrates are grown by hydride vapor phase epitaxy(HVPE)and doped with Fe. The anisotropy of Rayleigh propagation and the electromechanical coupling coefficient in Fe-doped GaN are investigated. The difference in resonance frequency between the SAWs between [1120] GaN and [1100] GaN is about 0.25% for the Rayleigh propagation mode, which is smaller than that of non-intentionally doped GaN film(~1%)reported in the literature. The electromechanical coupling coefficient of Fe-doped GaN is about 3.03%, which is higher than that of non-intentionally doped GaN film. The one-port SAWR fabricated on an 8-μm Fe-doped GaN/sapphire substrate has a quality factor of 2050, and that fabricated on Fe-doped bulk GaN has a quality factor as high as 3650. All of our results indicate that high-quality bulk GaN is a very promising material for application in SAW devices.
基金supported by the National Nature Science Foundation of China(11074268,10834010)
文摘Simple and efficient surface acoustic wave (SAW) two-port resonators with low insertion loss and high Q-values on ST-X quartz substrate using a corrosion-proof A1/Au-stripe electrode structure are developed for gas sensing. It was composed of two shorted grating reflectors and adjacent intedigital transducers (IDT), and an active metal film in the cavity between the IDTs for the sensitive film coating. The devices are expected to provide good protection towards metal electrode for gas sensors application in chemically reactive environments. Excellent device performance as low insertion loss, high Q factor and single-mode are achieved by carefully selecting the metallic electrode thickness, cavity length and acoustic aperture. Prior to fabrication, the coupling of modes (COM) model was performed for device simulation to determine the optimal design parameters. The fabricated single-mode SAW resonator at operation frequency of 300 MHz range exhibits matched insertion loss of ~6.5 dB and loaded Q factor in the 3000 range. Using the fabricated resonator as the feedback element, a duaresonator-oscillator with excellent frequency stability (0.1 ppm) was developed and evaluated experimentally, and it is significant for performance improvement of SAW gas sensor.
基金Project supported by the Tsinghua University Initiative Scientific Research Program(No.20131089351),China
文摘Surface acoustic wave (SAW) sensors and micro-electromechanical system (MEMS) technology provide a promising solution for measurement in harsh environments such as gas turbines. In this paper, a SAW resonator (size: 1107μm× 721 μm) based on the AlN/4H-SiC multilayer structure is designed and simulated. A MEMS-compatible fabrication process is employed to fabricate the resonator. The results show that highly c-axis-oriented AlN thin films deposited on the 4H-SiC substrate are obtained, with that the diffraction peak of AlN is 36.10° and the lowest full width at half maximum (FWHM) value is only 1.19°. The test results of the network analyzer are consistent with the simulation curve, which is very encouraging and indicates that our work is a significant attempt to solve the measurement problems mainly including high temperature stability of sensitive structures and the heat transmission of leads in harsh environments. It is essential to get the best performance of SAW resonator, optimize and characterize the behaviors in high temperatures in future research.
基金The research is supported by the National Natural Sciences Foundation of China(Grant No.61974137)the One Hundred Person project of the Chinese Academy of Science.
文摘Surface acoustic wave(SAW)resonator with outstanding quality factors of 4829/6775 at the resonant/anti-resonant frequencies has been demonstrated on C-doped semi-insulating bulk GaN.The impact of device parameters including aspect ratio of length to width of resonators,number of interdigital transducers,and acoustic propagation direction on resonator performance have been studied.For the first time,we demonstrate wireless temperature sensing from 21.6 to 120℃ with a stable temperature coefficient of frequency of–24.3 ppm/℃ on bulk GaN-based SAW resonators.
基金Supported by Qianjiang River Fund established by Zhejiang Provincial Government and Ningbo University and administered by Ningbo University and the National Natural Science Foundation of China (Grant No. 10572065)
文摘It is generally known that surface acoustic waves, or Rayleigh waves, have different mode shapes in infinite plates. To be precise, there are both exponentially decaying and growing components in plates appearing in pairs, representing symmetric and antisymmentric modes in a plate. As the plate thickness increases, the combined modes will approach the Rayleigh mode in a semi-infinite solid, exhibiting surface acoustic wave deformation and velocity. In this study, the two-dimensional theory for surface acoustic waves in finite plates is extended to include the exponentially growing modes in the expansion function. With these extra equations, we study the surface acoustic waves in a plate with different thickness to examine the coupling of the exponentially decaying and growing modes. It is found that for small thick- ness, the two groups of waves are strongly coupled, showing the significance of including the effect of thickness in analysis. As the thickness increases to certain values, such as more than five wavelengths, the exponentially decaying modes alone will be able to predict vibrations of surface acoustic wave modes accurately, thus simplifying the equations and solutions significantly.
文摘This paper discusses the validity of (adaptive) Lagrange generalized plain finite element method (FEM) and plate element method for accurate analysis of acoustic waves in multi-layered piezoelectric structures with tiny interfaces between metal electrodes and surface mounted piezoelectric substrates. We have come to conclusion that the quantitative relationships between the acoustic and electric fields in a piezoelectric structure can be accurately determined through the proposed finite element methods. The higher-order Lagrange FEM proposed for dynamic piezoelectric computation is proved to be very accurate (prescribed relative error 0.02% - 0.04% ) and a great improvement in convergence accuracy over the higher order Mindlin plate element method for piezoelectric structural analysis due to the assumptions and corrections in the plate theories.The converged lagrange finite element methods are compared with the plate element methods and the computedresults are in good agreement with available exact and experimental data. The adaptive Lagrange finite elementmethods and a new FEA computer program developed for macro- and micro-scale analyses are reviewed, and recently extended with great potential to high-precision nano-scale analysis in this paper and the similarities between piezoelectric and seismic wave propagations in layered structures and plates are stressed.
文摘We study the acoustomagnetoelectric (AME) effect in two-dimensional graphene with an energy bandgap using the semiclassical Boltzmann transport equation within the hypersound regime, (where represents the acoustic wavenumber and is the mean free path of the electron). The Boltzmann transport equation and other relevant equations were solved analytically to obtain an expression for the AME current density, consisting of longitudinal and Hall components. Our numerical results indicate that both components of the AME current densities display oscillatory behaviour. Furthermore, geometric resonances and Weiss oscillations were each defined using the relationship between the current density and Surface Acoustic Wave (SAW) frequency and the inverse of the applied magnetic field, respectively. Our results show that the AME current density of bandgap graphene, which can be controlled to suit a particular electronic device application, is smaller than that of (gapless) graphene and is therefore, more suited for nanophotonic device applications.