The dissipation rate of turbulent kinetic energy ( ε ) is the key process parameters for mixing in surface aerators. At constant dynamic variables (rotational speed), ε is greatly affected by the geometric param...The dissipation rate of turbulent kinetic energy ( ε ) is the key process parameters for mixing in surface aerators. At constant dynamic variables (rotational speed), ε is greatly affected by the geometric parameters, such as impeller diameter, cross-sectional area of the tank, liquid height, rotor blade length and immersion height. By doing numerical computation by visimix, present work analyzes the effect of non-dimensional (which is non-dimensionalized through rotor diameter) geometric parameters on ε. With an increase in liquid height, there is an increase in the case of energy dissipation. In the case of tank area and blade length, it is vice versa. Energy dissipation is not affected by the variation in immersion height of the impeller.展开更多
Macro and micromixing time represent two extreme mixing time scales,which governs the whole hydrodynamics characteristics of the surface aeration systems.With the help of experimental and numerical analysis,simulation...Macro and micromixing time represent two extreme mixing time scales,which governs the whole hydrodynamics characteristics of the surface aeration systems.With the help of experimental and numerical analysis,simulation equation governing those times scale has been presented in the present work.展开更多
A novel surface aeration configuration featured with aself-rotating and floating baffle (SRFB) and a Rushton disk turbine(DT) with a perforated disk has been developed. The SRFB, consistedof 12 fan blades twisted By a...A novel surface aeration configuration featured with aself-rotating and floating baffle (SRFB) and a Rushton disk turbine(DT) with a perforated disk has been developed. The SRFB, consistedof 12 fan blades twisted By an angle of 30 deg to the horizontalplane, is incorporated onto the impeller shaft to improve gasentrainment, bubble Breakup, mixing in a φ 154 mm agitated vessel.This new configuration is compared to the conventional DT surfaceAeration experimentally. The results suggest that the criticalimpeller speed for onset of gas entrainment is lower for The newconfiguration and it demands greater power consumption. Moreover, theSRFB system produces 30/100-168/100 Higher volumetric mass transfercoefficient per unit power input than that obtained in theconventional DT surface Aerator under the same operation conditions.展开更多
Abstract Lagoon-based municipal wastewater treatment plants (WWTPs) are facing difficulties meeting the needs of rapid population growth as well as the more stringent requirements of discharge permits. Three municip...Abstract Lagoon-based municipal wastewater treatment plants (WWTPs) are facing difficulties meeting the needs of rapid population growth as well as the more stringent requirements of discharge permits. Three municipal WWTPs were modified using a high surface area media with upgraded fine-bubble aeration systems. Performance data collected showed very promising results in terms of five-day biochemical oxygen demand (BOD5), ammonia (NH3) and total suspended solids (TSS) removal. Two-year average ammonia effluents were 4.1 mg. L-1 for Columbia WWTP, 4 mg. L-1 for Larchmont WWTP and 2.1 mg. L-1 for Laurelville WWTE respectively. Two- year average BOD5 effluents were 6.8, 4.9 and 2.7 mg.Ll, and TSS effluents were 15.0, 9.6 and 7.5 mg.L-L The systems also showed low fecal coliform (FC) levels in their effluents.展开更多
文摘The dissipation rate of turbulent kinetic energy ( ε ) is the key process parameters for mixing in surface aerators. At constant dynamic variables (rotational speed), ε is greatly affected by the geometric parameters, such as impeller diameter, cross-sectional area of the tank, liquid height, rotor blade length and immersion height. By doing numerical computation by visimix, present work analyzes the effect of non-dimensional (which is non-dimensionalized through rotor diameter) geometric parameters on ε. With an increase in liquid height, there is an increase in the case of energy dissipation. In the case of tank area and blade length, it is vice versa. Energy dissipation is not affected by the variation in immersion height of the impeller.
基金Supported by the Department of Science and Technology,Government of India (DSTO717)
文摘Macro and micromixing time represent two extreme mixing time scales,which governs the whole hydrodynamics characteristics of the surface aeration systems.With the help of experimental and numerical analysis,simulation equation governing those times scale has been presented in the present work.
基金Supported by the National Natural Science Foundation of China (No. 29792074) and SINOPEC.
文摘A novel surface aeration configuration featured with aself-rotating and floating baffle (SRFB) and a Rushton disk turbine(DT) with a perforated disk has been developed. The SRFB, consistedof 12 fan blades twisted By an angle of 30 deg to the horizontalplane, is incorporated onto the impeller shaft to improve gasentrainment, bubble Breakup, mixing in a φ 154 mm agitated vessel.This new configuration is compared to the conventional DT surfaceAeration experimentally. The results suggest that the criticalimpeller speed for onset of gas entrainment is lower for The newconfiguration and it demands greater power consumption. Moreover, theSRFB system produces 30/100-168/100 Higher volumetric mass transfercoefficient per unit power input than that obtained in theconventional DT surface Aerator under the same operation conditions.
文摘Abstract Lagoon-based municipal wastewater treatment plants (WWTPs) are facing difficulties meeting the needs of rapid population growth as well as the more stringent requirements of discharge permits. Three municipal WWTPs were modified using a high surface area media with upgraded fine-bubble aeration systems. Performance data collected showed very promising results in terms of five-day biochemical oxygen demand (BOD5), ammonia (NH3) and total suspended solids (TSS) removal. Two-year average ammonia effluents were 4.1 mg. L-1 for Columbia WWTP, 4 mg. L-1 for Larchmont WWTP and 2.1 mg. L-1 for Laurelville WWTE respectively. Two- year average BOD5 effluents were 6.8, 4.9 and 2.7 mg.Ll, and TSS effluents were 15.0, 9.6 and 7.5 mg.L-L The systems also showed low fecal coliform (FC) levels in their effluents.