Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between mar...Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between marine clay and structural materials with different roughness was studied in this paper by using 3D optical scanning tests,a modified direct shear device and numerical simulation.Relationships between the surface roughness of structures,water content and interface friction angle were presented by model tests.The increase of water contents decreased the interface friction angles.For interfaces with different roughness,the interface friction angles will be smaller than that of the soil when the water content exceeds a certain value.The roughness of the interface and the water content of the soil are mutually coupled to influence the coefficient of friction(COF).This paper proposed a Finite Element Method(FEM)to simulate the interface direct shear tests of structures with different roughness.The surface models with different roughness are established based on the structure data obtained by 3D scanning.The Coupled Eulerian-Lagrangian(CEL)approach was employed to analyse soils sheared by irregular surfaces.The interface behavior for interfaces with different roughness under cyclic shear stresses was analyzed by FEM.展开更多
Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of hi...Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices.Based on the ultra-high basal-plane thermal conductivity,graphene is an ideal candidate for preparing high-performance TIMs,preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM.However,the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory.In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved,another critical factor is the limited actual contact area leading to relatively high contact thermal resistance(20-30 K mm^(2) W^(−1))of the“solid-solid”mating interface formed by the vertical graphene and the rough chip/heat sink.To solve this common problem faced by vertically aligned graphene,in this work,we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces.Based on rational graphene orientation regulation in the middle tier,the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m^(−1) K^(−1).Additionally,we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a“liquid-solid”mating interface,significantly increasing the effective heat transfer area and giving a low contact thermal con-ductivity of 4-6 K mm^(2) W^(−1) under packaging conditions.This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management.展开更多
Ultrafast laser processing technology has offered a wide range of opportunities in micro/nano fabrication and other fields such as nanotechnology,biotechnology,energy science,and photonics due to its controllable proc...Ultrafast laser processing technology has offered a wide range of opportunities in micro/nano fabrication and other fields such as nanotechnology,biotechnology,energy science,and photonics due to its controllable processing precision,diverse processing capabilities,and broad material adaptability.The processing abilities and applications of the ultrafast laser still need more exploration.In the field of material processing,controlling the atomic scale structure in nanomaterials is challenging.Complex effects exist in ultrafast laser surface/interface processing,making it difficult to modulate the nanostructure and properties of the surface/interface as required.In the ultrafast laser fabrication of micro functional devices,the processing ability needs to be improved.Here,we review the research progress of ultrafast laser micro/nano fabrication in the areas of material processing,surface/interface controlling,and micro functional devices fabrication.Several useful ultrafast laser processing methods and applications in these areas are introduced.With various processing effects and abilities,the ultrafast laser processing technology has demonstrated application values in multiple fields from science to industry.展开更多
Effective thermal transport across solid-solid interfaces which is essential in thermal interface materials(TIMs),necessitates both optimal thixotropy and high thermal conductivity.The role of filler surface modificat...Effective thermal transport across solid-solid interfaces which is essential in thermal interface materials(TIMs),necessitates both optimal thixotropy and high thermal conductivity.The role of filler surface modification,a fundamental aspect of TIM fabrication,in the influence of these properties is not fully understood.This study employs the use of a silane coupling agent(SCA)to modify alumina,integrating experimental approaches with molecular dynamics simulations,to elucidate the interface effects on thixotropy and thermal conductivity in polydimethylsiloxane(PDMS)-based TIMs.Our findings reveal that the variations of SCAs modify both interface binding energy and transition layer thickness.The interface binding energy restricts macromolecular segmental relaxation near the interface,hindering desirable thixotropy and bond line thickness.On the contrary,the thickness of the transition layer at the interface positively influences thermal conductivity,facilitating the transport of phonons between the polymer and filler.Consequently,selecting an optimal SCA allows a balance between traditionally conflicting goals of high thermal conductivity and minimal bond line thickness,achieving an impressively low interface thermal resistance of just 2.45-4.29 K·mm^(2)·W^(-1)at275.8 kPa.展开更多
Silicone rubber(SR) composites are most widely used as thermal interface materials(TIMs) for electronics heat dissipation. Thermal impedance as the main bottleneck limiting the performance of TIMs is usually neglected...Silicone rubber(SR) composites are most widely used as thermal interface materials(TIMs) for electronics heat dissipation. Thermal impedance as the main bottleneck limiting the performance of TIMs is usually neglected. Herein, the thermal impedance of SR composites loaded with different levels of hexagonal boron nitride(h-BN) as TIMs was elaborated for the first time by the ASTM D 5470 standard test and finite element analysis. It was found that elastic modulus and surface roughness of SR composites increased with the increase of h-BN content, indicating that the conformity was reduced. When the assembly pressure was 0.69 MPa, there existed an optimal h-BN content at which the contact resistance was minimum(0.39 K·cm^(2)·W^(-1)). Although the decreased bond line thickness(BLT) by increasing the assembly pressure was beneficial to reduce the thermal impedance, the proper assembly pressure should be selected to prevent the warpage of the contact surfaces and the increase in contact resistance, according to the compression properties of the SR composites. This study provides valuable insights into fabrication of high-performance TIMs for modern electronic device applications.展开更多
The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we develope...The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we developed a spin-state and delocalized electron regulation method to optimize oxygen evolution reaction(OER)performance by in-situ growth of NiCo_(2)(OH)_(x) using Oswald ripening and coordinating etching process on MXene and plasma treatment.X-ray absorption spectroscopy,magnetic tests and electron paramagnetic resonance reveal that the coupling of NiCo_(2)(OH)_(x) and MXene can induce remarkable spin-state transition of Co^(3+)and transition metal ions electron delocalization,plasma treatment further optimizes the 3 d orbital structure and delocalized electron density.The unique Jahn-Teller phenomenon can be brought by the intermediate spin state(t2 _(g)^(5) e_(g)^(1))of Co^(3+),which benefits from the partial electron occupied egorbitals.This distinct electron configuration(t2_(g)^(5) e_(g)^(1))with unpaired electrons leads to orbital degeneracy,that the adsorption free energy of intermediate species and conductivity were further optimized.The optimized electrocatalyst exhibits excellent OER activity with an overpotential of 268 m V at 10 m A cm^(-2).DFT calculations show that plasma treatment can effectively regulate the d-band center of TMs to optimize the adsorption and improve the OER activity.This approach could guide the rational design and discovery of electrocatalysts with ideal electron configurations in the future.展开更多
Fe/Tb multilayers with various Fe layer thickness and fixed Tb layer thickness were prepared by e-beam alternate vapor deposition. Analyses of the microstructure of these films show that the magnetic performance is st...Fe/Tb multilayers with various Fe layer thickness and fixed Tb layer thickness were prepared by e-beam alternate vapor deposition. Analyses of the microstructure of these films show that the magnetic performance is strongly affected by the interface structure. Fe in the films evolved to amorphous phase and the Fe/Tb interface became indiscernible with decreasing Fe thickness. At the same time, the film was observed to perform superparamagnetically, which is quite different from the ferromagnetic behavior of Fe/Tb multilayers that have sharp Fe/Tb interface. Our work shows that the interface roughness has strong influence to the properties of magnetic multilayers.展开更多
To increase the adhesion strength between the coating and the substrate, sintered Ti(C,N)-based cermets were selected and deposited with monolayer TiN using a multiarc ion-plating technique; subsequently, hot isosta...To increase the adhesion strength between the coating and the substrate, sintered Ti(C,N)-based cermets were selected and deposited with monolayer TiN using a multiarc ion-plating technique; subsequently, hot isostatic pressing (HIPhag) treatment was performed at 1000℃ using nitrogen pressure up to 110 MPa. The mechanical properties of cermets after a coating process and subsequent HIPing treatment have been evaluated with respect to the hardness, the residual stress, and the coating adhesion. The results show that atter the HIPing process, there was a higher increase ha critical load ha the TiN-coated cermets with lower surface roughness compared with those with higher surface roughness. In all cases, the residual stress was found to be compressive. The effects of substrate surface roughness and posttreatment on the adhesion strength of the coatings were thus investigated. It was also fotmd that the HIPing posttreatment process is well suited for hacreasing the adhesion strength between the coating and the substrate.展开更多
The stress intensity factors (SIF) considering arbitrarily distributed surface tractions are evaluated based on the sealed boundary finite element method (SBFEM). The semi-analytical solving process for the stress...The stress intensity factors (SIF) considering arbitrarily distributed surface tractions are evaluated based on the sealed boundary finite element method (SBFEM). The semi-analytical solving process for the stress intensity factors including the effects of surface tractions is presented. Provided are the numerical examples for the evaluation of mode I and Ⅱ stress intensity factors with linear and non-linear distributing forces loaded on the crack surfaces. The crack problems of anisotropy and bimaterial interface are also studied and the stress intensity factors of single-edge-cracked orthotropic material and bi-material interface problems with surface tractions are calculated. Comparisons with the analytical solutions show that the proposed approach is effective and possesses high accuracy.展开更多
The barrel lifes of three small caliber rifles were tested by using the propellant with nanomaterial and the standard propellant respectively. The test results show that the service life increases observably due to ad...The barrel lifes of three small caliber rifles were tested by using the propellant with nanomaterial and the standard propellant respectively. The test results show that the service life increases observably due to adding nanomaterial to the propellant. Then, the influence of the nanomaterial on the tube was researched by splitting the two barrels tested and detecting their inner surfaces. It was found that the erosion of the barrel bore is reduced observably by using the propellant with nanomaterial. And it makes the volume and the size of the gun chamber change less. Therefore, the barrel life can be prolonged by adding the nanomaterial in the propellant.展开更多
The corrosion behavior of tantalum and its nitrides in stirring NaOHsolutions was researched by potentiostatic method, cyclic voltammetry and XPS. The results showedthat the corrosion products were composed of Ta_2O_5...The corrosion behavior of tantalum and its nitrides in stirring NaOHsolutions was researched by potentiostatic method, cyclic voltammetry and XPS. The results showedthat the corrosion products were composed of Ta_2O_5 and NaTaO_3. The corrosion reaction formula oftantalum and its nitrides was written according to cyclic volt-ampere curves. The electric chargetransfer coefficient and the electric charge transfer number were calculated展开更多
In this paper, Cu-Cu interconnects with ultrafine pad pitches of 6 p.m, 8 p.m, and 15 p.m are implemented on the 12 inch wafers by a direct bonding process. Defects are not found by traditional non-destructive (NDT)...In this paper, Cu-Cu interconnects with ultrafine pad pitches of 6 p.m, 8 p.m, and 15 p.m are implemented on the 12 inch wafers by a direct bonding process. Defects are not found by traditional non-destructive (NDT) c-mode scanning acoustic microscopy (c-SAM). However, cross sectional observation of bonding interfaces reveals that micro-defects such as micro seams are located at SiO2 bonding interfaces. In order to examine the micro-defects in the ultra-fine pitch direct bonding process by the NDT technology, a novel "defect-enlarged approach" is proposed. The bonded dies are first annealed in an N2 oven at 300 ℃ for a few hours and then cooled quickly in air. The c-SAM scanning images show large defects at the place where nothing can be detected by c-SAM before this treatment. Cross sectional observation of the bonding interfaces indicates that these defects consist of large size micro seams at the SiO2 bonding interface, especially near Cu pads with an ultrafine pitch of 6μm. However, these large defects disappear after several hours at room temperature, observed by c-SAM. It is inferred that the disappearance of these defects inspected by the "defect-enlarged approach" results from the combination of intrinsic micro seams and "weak" bonds in the silicon oxide layer. Then the underlying physical mechanism of these micro-defects is proposed, which is influenced by Cu pad surface topology and bonding models.展开更多
背景:股骨头坏死出现新月征是病情进程的“分水岭”,修复和稳定骨-软骨界面对阻止病情继续进展和预防股骨头塌陷尤为重要。利用组织工程学同步修复、整合骨-软骨界面具有潜在优势。目的:综述探讨解决股骨头坏死软骨下分离的潜在适宜技...背景:股骨头坏死出现新月征是病情进程的“分水岭”,修复和稳定骨-软骨界面对阻止病情继续进展和预防股骨头塌陷尤为重要。利用组织工程学同步修复、整合骨-软骨界面具有潜在优势。目的:综述探讨解决股骨头坏死软骨下分离的潜在适宜技术。方法:检索1970年1月至2023年4月PubMed、Web of Science及中国知网、万方数据库中发表的相关文献,英文检索词:“Femoral head necrosis,Avascular necrosis of femoral head,Osteonecrosis of femoral head”等,中文检索词:“股骨头坏死,软骨下骨,软骨,软骨与软骨下骨整合”等,最终纳入114篇文献进行综述分析。结果与结论:①结构缺陷、缺血缺氧环境、炎症因素和应力集中可能造成股骨头坏死软骨下分离现象,软骨下骨分离会造成塌陷进展,并且可能与保髋手术失败相关,利用组织工程支架实现支架与骨-软骨界面的整合是治疗股骨头坏死软骨下分离的潜在方法之一。②目前的文献研究表明,多相、梯度支架和复合材料在促进骨、软骨细胞黏附与增殖,骨软骨基质的沉积方面均有提升,有助于支架与骨-软骨界面的整合,对治疗股骨头坏死软骨下分离有参考价值。③通过对支架表面进行修饰可以提高与界面整合的效率,但有各自不同的优缺点,提供不同环境的支架能够诱导同种间充质干细胞差异分化,有助于不同界面之间的整合。④未来有望应用于股骨头坏死软骨下分离的支架应为复合材料,具有梯度化和差异化的仿生结构,通过表面修饰和干细胞加载促进骨-软骨界面与支架的整合以实现治疗目的,但仍需进一步研究验证,而支架的降解速率与修复进度同步和不同界面之间的稳定性是未来需要解决的主要问题。展开更多
Two-dimensional(2 D) materials attracted substantial attention due to their extraordinary physical properties resulting from the unique atomic thickness. 2 D materials could be considered as material systems with flat...Two-dimensional(2 D) materials attracted substantial attention due to their extraordinary physical properties resulting from the unique atomic thickness. 2 D materials could be considered as material systems with flat surfaces at both sides, while the van der Waals gap is a natural out-of-plane interface between two monolayers. However, defects are inevitably presented and often cause significant surface and interface reconstruction, which modify the physical properties of the materials being investigated. In this review article, we reviewed the effort achieved in probing the defect structures and the reconstruction of surface and interface in novel 2 D materials through aberration corrected low voltage scanning transmission electron microscopy(LVSTEM). The LVSTEM technique enables us to unveil the intrinsic atomic structure of defects atom-by-atom, and even directly visualize the dynamical reconstruction process with single atom precision. The effort in understanding the defect structures and their contributions in the surface and interface reconstructions in 2 D materials shed light on the origin of their novel physical phenomenon, and also pave the way for defect engineering in future potential applications.展开更多
基金supported by a grant from the National Natural Science Foundations of China(No.52171282)supported by Taishan Scholars Program of Shandong Province,China(No.tsqn202306098)the Shandong Provincial Key Research and Development Plan,China(No.2021ZLGX04).
文摘Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between marine clay and structural materials with different roughness was studied in this paper by using 3D optical scanning tests,a modified direct shear device and numerical simulation.Relationships between the surface roughness of structures,water content and interface friction angle were presented by model tests.The increase of water contents decreased the interface friction angles.For interfaces with different roughness,the interface friction angles will be smaller than that of the soil when the water content exceeds a certain value.The roughness of the interface and the water content of the soil are mutually coupled to influence the coefficient of friction(COF).This paper proposed a Finite Element Method(FEM)to simulate the interface direct shear tests of structures with different roughness.The surface models with different roughness are established based on the structure data obtained by 3D scanning.The Coupled Eulerian-Lagrangian(CEL)approach was employed to analyse soils sheared by irregular surfaces.The interface behavior for interfaces with different roughness under cyclic shear stresses was analyzed by FEM.
基金flnancial support by the National Natural Science Foundation of China (52102055, 5227020331, 52075527)National Key R&D Program of China (2017YFB0406000 and 2017YFE0128600)+8 种基金the Project of the Chinese Academy of Sciences (XDC07030100, XDA22020602, ZDKYYQ20200001 and ZDRW-CN-2019-3)CAS Youth Innovation Promotion Association (2020301)Science and Technology Major Project of Ningbo (2021Z120, 2021Z115, 2022Z084, 2018B10046 and 2016S1002)the Natural Science Foundation of Ningbo (2017A610010)Foundation of State Key Laboratory of Solid lubrication (LSL-1912)China Postdoctoral Science Foundation (2020M681965, 2022M713243)National Key Laboratory of Science and Technology on Advanced Composites in Special Environments (6142905192806)K.C. Wong Education Foundation (GJTD-2019-13)the 3315 Program of Ningbo for financial support
文摘Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices.Based on the ultra-high basal-plane thermal conductivity,graphene is an ideal candidate for preparing high-performance TIMs,preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM.However,the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory.In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved,another critical factor is the limited actual contact area leading to relatively high contact thermal resistance(20-30 K mm^(2) W^(−1))of the“solid-solid”mating interface formed by the vertical graphene and the rough chip/heat sink.To solve this common problem faced by vertically aligned graphene,in this work,we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces.Based on rational graphene orientation regulation in the middle tier,the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m^(−1) K^(−1).Additionally,we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a“liquid-solid”mating interface,significantly increasing the effective heat transfer area and giving a low contact thermal con-ductivity of 4-6 K mm^(2) W^(−1) under packaging conditions.This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management.
基金supported by the National Natural Science Foundation of China(No.52075289)the Tsinghua-Jiangyin Innovation Special Fund(TJISF,No.2023JYTH0104).
文摘Ultrafast laser processing technology has offered a wide range of opportunities in micro/nano fabrication and other fields such as nanotechnology,biotechnology,energy science,and photonics due to its controllable processing precision,diverse processing capabilities,and broad material adaptability.The processing abilities and applications of the ultrafast laser still need more exploration.In the field of material processing,controlling the atomic scale structure in nanomaterials is challenging.Complex effects exist in ultrafast laser surface/interface processing,making it difficult to modulate the nanostructure and properties of the surface/interface as required.In the ultrafast laser fabrication of micro functional devices,the processing ability needs to be improved.Here,we review the research progress of ultrafast laser micro/nano fabrication in the areas of material processing,surface/interface controlling,and micro functional devices fabrication.Several useful ultrafast laser processing methods and applications in these areas are introduced.With various processing effects and abilities,the ultrafast laser processing technology has demonstrated application values in multiple fields from science to industry.
基金financially supported by the National Natural Science Foundation of China(Nos.52373042 and 52103091)the National Key Research and Development Project of China(No.2022YFB3806900)the International Visiting Program for Excellent Young Scholars of SCU。
文摘Effective thermal transport across solid-solid interfaces which is essential in thermal interface materials(TIMs),necessitates both optimal thixotropy and high thermal conductivity.The role of filler surface modification,a fundamental aspect of TIM fabrication,in the influence of these properties is not fully understood.This study employs the use of a silane coupling agent(SCA)to modify alumina,integrating experimental approaches with molecular dynamics simulations,to elucidate the interface effects on thixotropy and thermal conductivity in polydimethylsiloxane(PDMS)-based TIMs.Our findings reveal that the variations of SCAs modify both interface binding energy and transition layer thickness.The interface binding energy restricts macromolecular segmental relaxation near the interface,hindering desirable thixotropy and bond line thickness.On the contrary,the thickness of the transition layer at the interface positively influences thermal conductivity,facilitating the transport of phonons between the polymer and filler.Consequently,selecting an optimal SCA allows a balance between traditionally conflicting goals of high thermal conductivity and minimal bond line thickness,achieving an impressively low interface thermal resistance of just 2.45-4.29 K·mm^(2)·W^(-1)at275.8 kPa.
基金financially supported by Sichuan Science and Technology Program (No.2022YFH0090)the Fundamental Research Funds for the Central Universities。
文摘Silicone rubber(SR) composites are most widely used as thermal interface materials(TIMs) for electronics heat dissipation. Thermal impedance as the main bottleneck limiting the performance of TIMs is usually neglected. Herein, the thermal impedance of SR composites loaded with different levels of hexagonal boron nitride(h-BN) as TIMs was elaborated for the first time by the ASTM D 5470 standard test and finite element analysis. It was found that elastic modulus and surface roughness of SR composites increased with the increase of h-BN content, indicating that the conformity was reduced. When the assembly pressure was 0.69 MPa, there existed an optimal h-BN content at which the contact resistance was minimum(0.39 K·cm^(2)·W^(-1)). Although the decreased bond line thickness(BLT) by increasing the assembly pressure was beneficial to reduce the thermal impedance, the proper assembly pressure should be selected to prevent the warpage of the contact surfaces and the increase in contact resistance, according to the compression properties of the SR composites. This study provides valuable insights into fabrication of high-performance TIMs for modern electronic device applications.
基金supported by the National Natural Science Foundation of China(21801090,21831003 and 21621001)the Jilin Scientific and Technological Development Program(20200802003GH)+2 种基金the Scientific Research Project in the Education Department of Jilin Province(JJKH20211044KJ)the Project on Experimental Technique of Jilin University(409020720202)supported by Users with the Excellence Program of Hefei Science Center CAS(2020HSC-UE002)。
文摘The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we developed a spin-state and delocalized electron regulation method to optimize oxygen evolution reaction(OER)performance by in-situ growth of NiCo_(2)(OH)_(x) using Oswald ripening and coordinating etching process on MXene and plasma treatment.X-ray absorption spectroscopy,magnetic tests and electron paramagnetic resonance reveal that the coupling of NiCo_(2)(OH)_(x) and MXene can induce remarkable spin-state transition of Co^(3+)and transition metal ions electron delocalization,plasma treatment further optimizes the 3 d orbital structure and delocalized electron density.The unique Jahn-Teller phenomenon can be brought by the intermediate spin state(t2 _(g)^(5) e_(g)^(1))of Co^(3+),which benefits from the partial electron occupied egorbitals.This distinct electron configuration(t2_(g)^(5) e_(g)^(1))with unpaired electrons leads to orbital degeneracy,that the adsorption free energy of intermediate species and conductivity were further optimized.The optimized electrocatalyst exhibits excellent OER activity with an overpotential of 268 m V at 10 m A cm^(-2).DFT calculations show that plasma treatment can effectively regulate the d-band center of TMs to optimize the adsorption and improve the OER activity.This approach could guide the rational design and discovery of electrocatalysts with ideal electron configurations in the future.
文摘Fe/Tb multilayers with various Fe layer thickness and fixed Tb layer thickness were prepared by e-beam alternate vapor deposition. Analyses of the microstructure of these films show that the magnetic performance is strongly affected by the interface structure. Fe in the films evolved to amorphous phase and the Fe/Tb interface became indiscernible with decreasing Fe thickness. At the same time, the film was observed to perform superparamagnetically, which is quite different from the ferromagnetic behavior of Fe/Tb multilayers that have sharp Fe/Tb interface. Our work shows that the interface roughness has strong influence to the properties of magnetic multilayers.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50074017).
文摘To increase the adhesion strength between the coating and the substrate, sintered Ti(C,N)-based cermets were selected and deposited with monolayer TiN using a multiarc ion-plating technique; subsequently, hot isostatic pressing (HIPhag) treatment was performed at 1000℃ using nitrogen pressure up to 110 MPa. The mechanical properties of cermets after a coating process and subsequent HIPing treatment have been evaluated with respect to the hardness, the residual stress, and the coating adhesion. The results show that atter the HIPing process, there was a higher increase ha critical load ha the TiN-coated cermets with lower surface roughness compared with those with higher surface roughness. In all cases, the residual stress was found to be compressive. The effects of substrate surface roughness and posttreatment on the adhesion strength of the coatings were thus investigated. It was also fotmd that the HIPing posttreatment process is well suited for hacreasing the adhesion strength between the coating and the substrate.
基金The present research workis financially supported by the National Natural Science Foundation of China (Grant No90510018)China Postdoctorial Science Foundation (Grant No20060390985)
文摘The stress intensity factors (SIF) considering arbitrarily distributed surface tractions are evaluated based on the sealed boundary finite element method (SBFEM). The semi-analytical solving process for the stress intensity factors including the effects of surface tractions is presented. Provided are the numerical examples for the evaluation of mode I and Ⅱ stress intensity factors with linear and non-linear distributing forces loaded on the crack surfaces. The crack problems of anisotropy and bimaterial interface are also studied and the stress intensity factors of single-edge-cracked orthotropic material and bi-material interface problems with surface tractions are calculated. Comparisons with the analytical solutions show that the proposed approach is effective and possesses high accuracy.
文摘The barrel lifes of three small caliber rifles were tested by using the propellant with nanomaterial and the standard propellant respectively. The test results show that the service life increases observably due to adding nanomaterial to the propellant. Then, the influence of the nanomaterial on the tube was researched by splitting the two barrels tested and detecting their inner surfaces. It was found that the erosion of the barrel bore is reduced observably by using the propellant with nanomaterial. And it makes the volume and the size of the gun chamber change less. Therefore, the barrel life can be prolonged by adding the nanomaterial in the propellant.
文摘The corrosion behavior of tantalum and its nitrides in stirring NaOHsolutions was researched by potentiostatic method, cyclic voltammetry and XPS. The results showedthat the corrosion products were composed of Ta_2O_5 and NaTaO_3. The corrosion reaction formula oftantalum and its nitrides was written according to cyclic volt-ampere curves. The electric chargetransfer coefficient and the electric charge transfer number were calculated
基金supported by the National Natural Science Foundation of China(Grant No.61274111)the National Basic Research Program of China(Gran No.2015CB057205)
文摘In this paper, Cu-Cu interconnects with ultrafine pad pitches of 6 p.m, 8 p.m, and 15 p.m are implemented on the 12 inch wafers by a direct bonding process. Defects are not found by traditional non-destructive (NDT) c-mode scanning acoustic microscopy (c-SAM). However, cross sectional observation of bonding interfaces reveals that micro-defects such as micro seams are located at SiO2 bonding interfaces. In order to examine the micro-defects in the ultra-fine pitch direct bonding process by the NDT technology, a novel "defect-enlarged approach" is proposed. The bonded dies are first annealed in an N2 oven at 300 ℃ for a few hours and then cooled quickly in air. The c-SAM scanning images show large defects at the place where nothing can be detected by c-SAM before this treatment. Cross sectional observation of the bonding interfaces indicates that these defects consist of large size micro seams at the SiO2 bonding interface, especially near Cu pads with an ultrafine pitch of 6μm. However, these large defects disappear after several hours at room temperature, observed by c-SAM. It is inferred that the disappearance of these defects inspected by the "defect-enlarged approach" results from the combination of intrinsic micro seams and "weak" bonds in the silicon oxide layer. Then the underlying physical mechanism of these micro-defects is proposed, which is influenced by Cu pad surface topology and bonding models.
文摘背景:股骨头坏死出现新月征是病情进程的“分水岭”,修复和稳定骨-软骨界面对阻止病情继续进展和预防股骨头塌陷尤为重要。利用组织工程学同步修复、整合骨-软骨界面具有潜在优势。目的:综述探讨解决股骨头坏死软骨下分离的潜在适宜技术。方法:检索1970年1月至2023年4月PubMed、Web of Science及中国知网、万方数据库中发表的相关文献,英文检索词:“Femoral head necrosis,Avascular necrosis of femoral head,Osteonecrosis of femoral head”等,中文检索词:“股骨头坏死,软骨下骨,软骨,软骨与软骨下骨整合”等,最终纳入114篇文献进行综述分析。结果与结论:①结构缺陷、缺血缺氧环境、炎症因素和应力集中可能造成股骨头坏死软骨下分离现象,软骨下骨分离会造成塌陷进展,并且可能与保髋手术失败相关,利用组织工程支架实现支架与骨-软骨界面的整合是治疗股骨头坏死软骨下分离的潜在方法之一。②目前的文献研究表明,多相、梯度支架和复合材料在促进骨、软骨细胞黏附与增殖,骨软骨基质的沉积方面均有提升,有助于支架与骨-软骨界面的整合,对治疗股骨头坏死软骨下分离有参考价值。③通过对支架表面进行修饰可以提高与界面整合的效率,但有各自不同的优缺点,提供不同环境的支架能够诱导同种间充质干细胞差异分化,有助于不同界面之间的整合。④未来有望应用于股骨头坏死软骨下分离的支架应为复合材料,具有梯度化和差异化的仿生结构,通过表面修饰和干细胞加载促进骨-软骨界面与支架的整合以实现治疗目的,但仍需进一步研究验证,而支架的降解速率与修复进度同步和不同界面之间的稳定性是未来需要解决的主要问题。
基金the support from National Natural Science Foundation of China(No.11974156)Guangdong International Science Collaboration Project(No.2019A050510001)the assistance of SUSTech Core Research Facilities,especially technical support from Pico-Centre that receives support from Presidential fund and Development and Reform Commission of Shenzhen。
文摘Two-dimensional(2 D) materials attracted substantial attention due to their extraordinary physical properties resulting from the unique atomic thickness. 2 D materials could be considered as material systems with flat surfaces at both sides, while the van der Waals gap is a natural out-of-plane interface between two monolayers. However, defects are inevitably presented and often cause significant surface and interface reconstruction, which modify the physical properties of the materials being investigated. In this review article, we reviewed the effort achieved in probing the defect structures and the reconstruction of surface and interface in novel 2 D materials through aberration corrected low voltage scanning transmission electron microscopy(LVSTEM). The LVSTEM technique enables us to unveil the intrinsic atomic structure of defects atom-by-atom, and even directly visualize the dynamical reconstruction process with single atom precision. The effort in understanding the defect structures and their contributions in the surface and interface reconstructions in 2 D materials shed light on the origin of their novel physical phenomenon, and also pave the way for defect engineering in future potential applications.