The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows ...The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows that tempering sorbite which has excellent overall performance was obtained in both modes. The microstructure of Quenching and Tempering mode welded joints got more fine grain. Even though the hardness of tempering bead welded joints is higher than the general one,it still meets the standards which is lower than 350 HV. The impact absorbing energy of each district of tempering bead welded joints HAZ reached 170 J,which is equal to general one.展开更多
One of the main challenges of biosensor design is to understand the protein or peptide stability on the chip in high resolution structural detail. Since conventional experimental methods are limited by the resolution ...One of the main challenges of biosensor design is to understand the protein or peptide stability on the chip in high resolution structural detail. Since conventional experimental methods are limited by the resolution for their applications on surface tethered peptides/proteins, a recently developed coarse grained simulation method is employed to explore the peptide/surface interaction in residue-level resolution. This work shows how the coarse grained model successfully describes peptide-surface interactions by evaluating thermal stability of the peptide cecropin PI in bulk solution and on surfaces by physical adsorption and chemical tethering. The simulation also reproduces observations of peptide orientations on the self-assembled monolayer surface from earlier experimental work. Additionally, using knowledge obtained from the simulations, specific mutations are suggested and the desired structure and pose on the surface is obtained. In summary, this work sheds a light on the reasonable biosensor design that is ~uided by simulations.展开更多
基金supported by the Key State Science and Technology Projects(Grant No.2011ZX04016-061 and No.2012ZX06004-001-001-005)
文摘The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows that tempering sorbite which has excellent overall performance was obtained in both modes. The microstructure of Quenching and Tempering mode welded joints got more fine grain. Even though the hardness of tempering bead welded joints is higher than the general one,it still meets the standards which is lower than 350 HV. The impact absorbing energy of each district of tempering bead welded joints HAZ reached 170 J,which is equal to general one.
文摘One of the main challenges of biosensor design is to understand the protein or peptide stability on the chip in high resolution structural detail. Since conventional experimental methods are limited by the resolution for their applications on surface tethered peptides/proteins, a recently developed coarse grained simulation method is employed to explore the peptide/surface interaction in residue-level resolution. This work shows how the coarse grained model successfully describes peptide-surface interactions by evaluating thermal stability of the peptide cecropin PI in bulk solution and on surfaces by physical adsorption and chemical tethering. The simulation also reproduces observations of peptide orientations on the self-assembled monolayer surface from earlier experimental work. Additionally, using knowledge obtained from the simulations, specific mutations are suggested and the desired structure and pose on the surface is obtained. In summary, this work sheds a light on the reasonable biosensor design that is ~uided by simulations.