Surface low/distortion is one of the most challenging surface deflections that have a great effect on the exterior appearance of automobiles.Most studies on surface distortion/deflection have focused on evaluation and...Surface low/distortion is one of the most challenging surface deflections that have a great effect on the exterior appearance of automobiles.Most studies on surface distortion/deflection have focused on evaluation and visualization techniques,the research work on correction or prevention of surface low/distortion is limited,and there is no perfect surface low/distortion corrective method that can satisfy the needs of the engineering.A B-spline based geometry morphing algorithm is proposed and then a new program based on UG-NX platform is developed to modify the die face in the surface low/distortion areas.To verify this developed system,the experimental dies that can replicate the surface low/distortion phenomenon successfully is put to use.Five geometric variables are introduced to describe the basic geometry of typical depression features of automotive outer panels.The experimental dies are then designed to reflect various combinations of these geometric parameters.The stamping experiments are conducted on cold rolled grade 5(CR5) sheet steel and various static measurements,such as oil-stoning,laser scanner,etc,are performed to measure and record the surface low/distortions.Three approaches including good bearing,holds in blank and die face morphing that aim to correct low/distortions are tried out and surface low/distortions are observed in the specimen with reverse draw depth of 10 mm.The measurement results show that die morphing is a practical and effective method to correct the surface low/distortion.The correction method proposed can be used to minimize the occurrence of surface low/distortion in die manufacturing,which has certain reference significance to the correction of surface low/distortion.展开更多
An enhanced numerical model for simulating two-dimensional incompressible viscous flow with distorted free surface is reported. The numerical simulation is carried out through the CIP (Constrained Interpolation Prof...An enhanced numerical model for simulating two-dimensional incompressible viscous flow with distorted free surface is reported. The numerical simulation is carried out through the CIP (Constrained Interpolation Profile)-based method, which is described in the paper. A more accurate interface capturing scheme, the VOF/WLIC scheme (VOF:Volume-of-Fluid;WLIC:weighed line interface calculation), is adopted as the interface capturing method. To assess the developed algorithm and its versatility, a selection of test problems are examined, i.e. the square wave propagation, the Zalesak’s rigid body rotation, dam breaking problem with and without obstacles, wave sloshing in an excited wave tank and interaction between extreme waves and a floating body. Excellent agreements are obtained when numerical results are compared with available analytical, experimental, and other numerical results. These examples demonstrate that the use of the VOF/WLIC scheme in the free surface capturing makes better results and also the proposed CIP-based model is capable of predicting the freak wave-related phenomena.展开更多
Peculiarities of propagation of femtosecond pulses through a focusing diffractive optical element (DOE) are considered. It is shown that the time delay between the pulse and phase wavefronts can be decreased by fabric...Peculiarities of propagation of femtosecond pulses through a focusing diffractive optical element (DOE) are considered. It is shown that the time delay between the pulse and phase wavefronts can be decreased by fabricating the DOE on the optimal curvilinear surface.展开更多
基金supported by Key Project of National Natural Science Foundation of China (Grant No. 10932003)National Hi-tech Research and Development Program of China (863 Program,Grant No.2009AA04Z101)National Basic Research Program of China (973Program,Grant No. 2010CB832700)
文摘Surface low/distortion is one of the most challenging surface deflections that have a great effect on the exterior appearance of automobiles.Most studies on surface distortion/deflection have focused on evaluation and visualization techniques,the research work on correction or prevention of surface low/distortion is limited,and there is no perfect surface low/distortion corrective method that can satisfy the needs of the engineering.A B-spline based geometry morphing algorithm is proposed and then a new program based on UG-NX platform is developed to modify the die face in the surface low/distortion areas.To verify this developed system,the experimental dies that can replicate the surface low/distortion phenomenon successfully is put to use.Five geometric variables are introduced to describe the basic geometry of typical depression features of automotive outer panels.The experimental dies are then designed to reflect various combinations of these geometric parameters.The stamping experiments are conducted on cold rolled grade 5(CR5) sheet steel and various static measurements,such as oil-stoning,laser scanner,etc,are performed to measure and record the surface low/distortions.Three approaches including good bearing,holds in blank and die face morphing that aim to correct low/distortions are tried out and surface low/distortions are observed in the specimen with reverse draw depth of 10 mm.The measurement results show that die morphing is a practical and effective method to correct the surface low/distortion.The correction method proposed can be used to minimize the occurrence of surface low/distortion in die manufacturing,which has certain reference significance to the correction of surface low/distortion.
基金financially supported by the National Natural Science Foundation of China(Grant No.51209184)the Fundamental Research Funds for the Central Universities(Grant No.2012QNA4020)+1 种基金the Zhejiang Open Foundation of the Most Important Subjects,the Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province(Grant No.2013SS03)the Educational Commission of Zhejiang Province of China(Grant No.Y201225713)
文摘An enhanced numerical model for simulating two-dimensional incompressible viscous flow with distorted free surface is reported. The numerical simulation is carried out through the CIP (Constrained Interpolation Profile)-based method, which is described in the paper. A more accurate interface capturing scheme, the VOF/WLIC scheme (VOF:Volume-of-Fluid;WLIC:weighed line interface calculation), is adopted as the interface capturing method. To assess the developed algorithm and its versatility, a selection of test problems are examined, i.e. the square wave propagation, the Zalesak’s rigid body rotation, dam breaking problem with and without obstacles, wave sloshing in an excited wave tank and interaction between extreme waves and a floating body. Excellent agreements are obtained when numerical results are compared with available analytical, experimental, and other numerical results. These examples demonstrate that the use of the VOF/WLIC scheme in the free surface capturing makes better results and also the proposed CIP-based model is capable of predicting the freak wave-related phenomena.
文摘Peculiarities of propagation of femtosecond pulses through a focusing diffractive optical element (DOE) are considered. It is shown that the time delay between the pulse and phase wavefronts can be decreased by fabricating the DOE on the optimal curvilinear surface.