The human-computer interaction (HCI) is now playing a great role in computer technology. This study introduces an automatic document control technique which is based on the human hand waving movements. The recognition...The human-computer interaction (HCI) is now playing a great role in computer technology. This study introduces an automatic document control technique which is based on the human hand waving movements. The recognition of hand movement is realized according to the surface electromyography (sEMG). A collector is set on the forearm. The sEMG signal is recorded and conveyed to a PC terminal by using wireless Zigbee. An automatic algorithm is developed in order to extract the characteristics of sEMG, recognize the waving movements, and transmit to document control command. The developed human-computer interaction technique can be used as a new gallery for teaching, as well as an assistant tool for disabled person.展开更多
AIM: To determine the accuracy of 2-channel surface electromyography(sE MG) for diagnosing oropharyngeal dysphagia(OPD) in patients with cerebral palsy.METHODS: Participants with cerebral palsy and OPD between 5 and 3...AIM: To determine the accuracy of 2-channel surface electromyography(sE MG) for diagnosing oropharyngeal dysphagia(OPD) in patients with cerebral palsy.METHODS: Participants with cerebral palsy and OPD between 5 and 30 years of age and age- and sexmatched healthy individuals received s EMG testing during swallowing. Electrodes were placed over the submental and infrahyoid muscles, and s EMG recordings were made during stepwise(starting at 3 mL) determination of maximum swallowing volume. Outcome measures included submental muscle group maximum amplitude, infrahyoid muscle group maximum amplitude(IMGMA), time lag between the peak amplitudes of 2 muscle groups, and amplitude difference between the 2 muscle groups.RESULTS: A total of 20 participants with cerebral palsy and OPD(OPD group) and 60 age- and sex-matched healthy volunteers(control group) were recruited. Among 20 patients with OPD, 19 had Dysphagia Outcome and Severity Scale records. Of them, 8 were classified as severe dysphagia(level 1), 1 was moderate dysphagia(level 3), 4 were mild to moderate dysphagia(level 4), 3 were mild dysphagia(level 5), and 3 were within functional limits(level 6). Although the groups were matched for age and sex, participants in the OPD group were significantly shorter, weighed less and had lower body mass index than their counterparts in the control group(both, P < 0.001). All s EMG parameter values were significantly higher in the OPD group compared with the control group(P < 0.05). Differences were most pronounced at the 3 mL swallowing volume. IMGMA at the 3 mL volume was the best predictor of OPD with a sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 85.0%, 90.0%, 73.9%, 94.7% and 88.8%, respectively.展开更多
We analyze muscular dystrophy recorded by sEMG and use standard methodologies and nonlinear chaotic methods here including the RQA. We reach sufficient evidence that the sEMG signal contains a large chaotic component....We analyze muscular dystrophy recorded by sEMG and use standard methodologies and nonlinear chaotic methods here including the RQA. We reach sufficient evidence that the sEMG signal contains a large chaotic component. We have estimated the correlation dimension (fractal measure), the largest Lyapunov exponent, the LZ complexity and the %Rec and %Det of the RQA demonstrating that such indexes are able to detect the presence of repetitive hidden patterns in sEMG which, in turn, senses the level of MU synchronization within the muscle. The results give also an interesting methodological indication in the sense that it evidences the manner in which nonlinear methods and RQA must be arranged and applied in clinical routine in order to obtain results of clinical interest. We have studied the muscular dystrophy and evidence that the continuous regime of chaotic transitions that we have in muscular mechanisms may benefit in this pathology by the use of the NPT treatment that we have considered in detail in our previous publications.展开更多
To explore the mechanisms underlying exercise-induced local muscle fatigue in patients with idiopathic Parkinson's disease (PD),we used surface electromyography to record myoelectric signals from the tibialis anter...To explore the mechanisms underlying exercise-induced local muscle fatigue in patients with idiopathic Parkinson's disease (PD),we used surface electromyography to record myoelectric signals from the tibialis anterior muscle during isometric contraction-induced fatigue until exhaustion.The results revealed no significant differences between patients with idiopathic PD and healthy controls in maximum voluntary contraction of the tibialis anterior muscle.The basic characteristics of surface electromyography were also similar between the two groups.The duration of isometric contraction at 50% maximum voluntary contraction was shortened in PD patients.In addition,PD patients exhibited a stronger increase in mean square amplitude,but a weaker decrease in median frequency and mean power frequency compared with healthy controls during isometric contraction.The skeletal muscles of PD patients revealed specificity of surface electromyography findings,indicating increased fatigability compared with healthy controls.展开更多
BACKGROUND Dystonic gait(DG) is one of clinical symptoms associated with functional dystonia in the functional movement disorders(FMDs). Dystonia is often initiated or worsened by voluntary action and associated with ...BACKGROUND Dystonic gait(DG) is one of clinical symptoms associated with functional dystonia in the functional movement disorders(FMDs). Dystonia is often initiated or worsened by voluntary action and associated with overflow muscle activation. There is no report for DG in FMDs caused by an abnormal pattern in the ankle muscle recruitment strategy during gait.CASE SUMMARY A 52-year-old male patient presented with persistent limping gait. When we requested him to do dorsiflexion and plantar flexion of his ankle in the standing and seating positions, we didn’t see any abnormality. However, we could see the DG during the gait. There were no evidences of common peroneal neuropathy and L5 radiculopathy in the electrodiagnostic study. Magnetic resonance imaging of the lumbar spine, lower leg, and brain had no definite finding. No specific finding was seen in the neurologic examination. For further evaluation, a wireless surface electromyography(EMG) was performed. During the gait, EMG amplitude of left medial and lateral gastrocnemius(GCM) muscles was larger than right medial and lateral GCM muscles. When we analyzed EMG signals for each muscle, there were EMG bursts of double-contraction in the left medial and lateral GCM muscles, while EMG analysis of right medial and lateral GCM muscles noted regular bursts of single contraction. We could find a cause of DG in FMDs.CONCLUSION We report an importance of a wireless surface EMG, in which other examination didn’t reveal the cause of DG in FMDs.展开更多
This study is aimed at assessing muscle fatigue during a static contraction using multifractal analysis and found that the surface electromyographic (SEMG) signals characterized multiffactality during a static contr...This study is aimed at assessing muscle fatigue during a static contraction using multifractal analysis and found that the surface electromyographic (SEMG) signals characterized multiffactality during a static contraction. By applying the method of direct determination ofthef(a) singularity spectrum, the area of the multifractal spectrum of the SEMG signals was computed. The results showed that the spectrum area significantly increased during muscle fatigue. Therefore the area could be used as an assessor of muscle fatigue. Compared with the median frequency (MDF)--the most popular indicator of muscle fatigue, the spectrum area presented here showed higher sensitivity during a static contraction. So the singularity spectrum area is considered to be a more effective indicator than the MDF for estimating muscle fatigue.展开更多
An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often...An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often confronted with the problem of insufficient data points and noisy circumstances, which led to unsatisfactory results. Compared with fractal dimension as well as the standard ApEn, the improved ApEn can extract information underlying sEMG signals more efficiently and accu- rately. The method introduced here can also be applied to other medium-sized and noisy physiological signals.展开更多
文摘The human-computer interaction (HCI) is now playing a great role in computer technology. This study introduces an automatic document control technique which is based on the human hand waving movements. The recognition of hand movement is realized according to the surface electromyography (sEMG). A collector is set on the forearm. The sEMG signal is recorded and conveyed to a PC terminal by using wireless Zigbee. An automatic algorithm is developed in order to extract the characteristics of sEMG, recognize the waving movements, and transmit to document control command. The developed human-computer interaction technique can be used as a new gallery for teaching, as well as an assistant tool for disabled person.
文摘AIM: To determine the accuracy of 2-channel surface electromyography(sE MG) for diagnosing oropharyngeal dysphagia(OPD) in patients with cerebral palsy.METHODS: Participants with cerebral palsy and OPD between 5 and 30 years of age and age- and sexmatched healthy individuals received s EMG testing during swallowing. Electrodes were placed over the submental and infrahyoid muscles, and s EMG recordings were made during stepwise(starting at 3 mL) determination of maximum swallowing volume. Outcome measures included submental muscle group maximum amplitude, infrahyoid muscle group maximum amplitude(IMGMA), time lag between the peak amplitudes of 2 muscle groups, and amplitude difference between the 2 muscle groups.RESULTS: A total of 20 participants with cerebral palsy and OPD(OPD group) and 60 age- and sex-matched healthy volunteers(control group) were recruited. Among 20 patients with OPD, 19 had Dysphagia Outcome and Severity Scale records. Of them, 8 were classified as severe dysphagia(level 1), 1 was moderate dysphagia(level 3), 4 were mild to moderate dysphagia(level 4), 3 were mild dysphagia(level 5), and 3 were within functional limits(level 6). Although the groups were matched for age and sex, participants in the OPD group were significantly shorter, weighed less and had lower body mass index than their counterparts in the control group(both, P < 0.001). All s EMG parameter values were significantly higher in the OPD group compared with the control group(P < 0.05). Differences were most pronounced at the 3 mL swallowing volume. IMGMA at the 3 mL volume was the best predictor of OPD with a sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 85.0%, 90.0%, 73.9%, 94.7% and 88.8%, respectively.
文摘We analyze muscular dystrophy recorded by sEMG and use standard methodologies and nonlinear chaotic methods here including the RQA. We reach sufficient evidence that the sEMG signal contains a large chaotic component. We have estimated the correlation dimension (fractal measure), the largest Lyapunov exponent, the LZ complexity and the %Rec and %Det of the RQA demonstrating that such indexes are able to detect the presence of repetitive hidden patterns in sEMG which, in turn, senses the level of MU synchronization within the muscle. The results give also an interesting methodological indication in the sense that it evidences the manner in which nonlinear methods and RQA must be arranged and applied in clinical routine in order to obtain results of clinical interest. We have studied the muscular dystrophy and evidence that the continuous regime of chaotic transitions that we have in muscular mechanisms may benefit in this pathology by the use of the NPT treatment that we have considered in detail in our previous publications.
文摘To explore the mechanisms underlying exercise-induced local muscle fatigue in patients with idiopathic Parkinson's disease (PD),we used surface electromyography to record myoelectric signals from the tibialis anterior muscle during isometric contraction-induced fatigue until exhaustion.The results revealed no significant differences between patients with idiopathic PD and healthy controls in maximum voluntary contraction of the tibialis anterior muscle.The basic characteristics of surface electromyography were also similar between the two groups.The duration of isometric contraction at 50% maximum voluntary contraction was shortened in PD patients.In addition,PD patients exhibited a stronger increase in mean square amplitude,but a weaker decrease in median frequency and mean power frequency compared with healthy controls during isometric contraction.The skeletal muscles of PD patients revealed specificity of surface electromyography findings,indicating increased fatigability compared with healthy controls.
文摘BACKGROUND Dystonic gait(DG) is one of clinical symptoms associated with functional dystonia in the functional movement disorders(FMDs). Dystonia is often initiated or worsened by voluntary action and associated with overflow muscle activation. There is no report for DG in FMDs caused by an abnormal pattern in the ankle muscle recruitment strategy during gait.CASE SUMMARY A 52-year-old male patient presented with persistent limping gait. When we requested him to do dorsiflexion and plantar flexion of his ankle in the standing and seating positions, we didn’t see any abnormality. However, we could see the DG during the gait. There were no evidences of common peroneal neuropathy and L5 radiculopathy in the electrodiagnostic study. Magnetic resonance imaging of the lumbar spine, lower leg, and brain had no definite finding. No specific finding was seen in the neurologic examination. For further evaluation, a wireless surface electromyography(EMG) was performed. During the gait, EMG amplitude of left medial and lateral gastrocnemius(GCM) muscles was larger than right medial and lateral GCM muscles. When we analyzed EMG signals for each muscle, there were EMG bursts of double-contraction in the left medial and lateral GCM muscles, while EMG analysis of right medial and lateral GCM muscles noted regular bursts of single contraction. We could find a cause of DG in FMDs.CONCLUSION We report an importance of a wireless surface EMG, in which other examination didn’t reveal the cause of DG in FMDs.
基金Project (No. 2005CB724303) supported by the National Basic Re-search Program (973) of China
文摘This study is aimed at assessing muscle fatigue during a static contraction using multifractal analysis and found that the surface electromyographic (SEMG) signals characterized multiffactality during a static contraction. By applying the method of direct determination ofthef(a) singularity spectrum, the area of the multifractal spectrum of the SEMG signals was computed. The results showed that the spectrum area significantly increased during muscle fatigue. Therefore the area could be used as an assessor of muscle fatigue. Compared with the median frequency (MDF)--the most popular indicator of muscle fatigue, the spectrum area presented here showed higher sensitivity during a static contraction. So the singularity spectrum area is considered to be a more effective indicator than the MDF for estimating muscle fatigue.
基金Project supported by the National Natural Science Foundation of China (No. 60171006) and the National Basic Research Program (973) of China (No. 2005CB724303)
文摘An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often confronted with the problem of insufficient data points and noisy circumstances, which led to unsatisfactory results. Compared with fractal dimension as well as the standard ApEn, the improved ApEn can extract information underlying sEMG signals more efficiently and accu- rately. The method introduced here can also be applied to other medium-sized and noisy physiological signals.