Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with...Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with complex nanofabrication techniques,greatly restricting their practical applications.A convenient electrochemical method for transforming the surface of commercial gold wires/foils into silver-alloyed nanostructures is demonstrated in this report.Au substrates are treated with repetitive anodic and cathodic bias in an electrolyte of thiourea,in a one-pot one-step manner.X-rays absorption fine structure(XAFS)spectroscopy confirms that the AuAg alloy is induced at the surface.The unique AuAg alloyed surface nanostructures are particularly advantageous when served as SERS substrates,enabling a remarkably sensitive detection of Rhodamine B(a detection limit of 10^(-14)M,and uniform strong response throughout the substrates at 10^(-12)M).展开更多
Surface enhanced Raman scattering (SERS) spectroscopy was first utilized to study the photo-orientation behaviour of the photoreactive groups on a novel photo-alignment film surface and elucidate the generation mechan...Surface enhanced Raman scattering (SERS) spectroscopy was first utilized to study the photo-orientation behaviour of the photoreactive groups on a novel photo-alignment film surface and elucidate the generation mechanism of pretilt angle. The novel photo-alignment film was prepared by spin-coating a solution of ladderlike polysiloxane (LPS) bearing dual photoreactive group on an ITO surface and by irradiation with linear-polarized ultraviolet (LPUV) light A Si—H terminal compound (M) containing an identical photosensitive part has been used to fabricate a model film for SERS investigation.展开更多
The monodisperse Au@Ag bimetallic nanorod is encapsulated by crosslinked poly( N-isopropylacrylamide)( PNIPAM) to produce thermo-responsive composite microgel with well-defined core-shell structure( Au@ Ag NR@ PNIPAM ...The monodisperse Au@Ag bimetallic nanorod is encapsulated by crosslinked poly( N-isopropylacrylamide)( PNIPAM) to produce thermo-responsive composite microgel with well-defined core-shell structure( Au@ Ag NR@ PNIPAM microgel)by seed-precipitation polymerization method using butenoic acid modified Au @ Ag NRs as seeds. When the temperature of the aqueous medium increases from 20℃ to 50℃,the localized surface plasmon resonance( LSPR) band of the entrapped Au @ Ag NR is pronouncedly red-shifted because of the decreased spatial distances between them as a result of shrinkage of the microgels,leading to their plasmonic coupling. The temperature tunable plasmonic coupling is demonstrated by temperature dependence of the surface enhanced Raman spectroscopy( SERS) signal of 1-naphthol in aqueous solution. Different from static plasmonic coupling modes from nanostructured assembly or array system of noble metals,the proposed plasmonic coupling can be dynamically controlled by environmental temperature. Therefore, the thermo responsive hybrid microgels have potential applications in mobile LSPR or SERS microsensors for living tissues or cells.展开更多
Colorectal cancer(CRC) is the fourth most commoncancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer.Currently in the United Kingdom there is not...Colorectal cancer(CRC) is the fourth most commoncancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer.Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting.Raman spectroscopy and surface enhanced Raman spectroscopy(SERS) are forms of vibrational spectroscopy that offer a nondestructive method to gain molecular information about biological samples.The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes,to the use of micro-spectrometers for analysis of biofluids.The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC.The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom.The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed.Finally,future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed.展开更多
Electrochemical CO_(2)reduction to formate is a promising approach to store renewable electricity and utilize CO_(2).Tin oxide catalysts are efficient catalysts for this process,while the mechanisms underneath,especia...Electrochemical CO_(2)reduction to formate is a promising approach to store renewable electricity and utilize CO_(2).Tin oxide catalysts are efficient catalysts for this process,while the mechanisms underneath,especially the existence and role of oxidized tin species under CO2 electroreduction conditions remain unclear.In this work,we provide strong evidence on the presence of oxidized tin species on both SnO_(2)and Sn during CO_(2)reduction via in situ surface‐enhanced Raman spectroscopy,while in different nature.Reactivity measurements show similar activity and selectivity to formate production on SnO_(2)and Sn catalysts.Combined analysis of Raman spectra and reactivity results suggests that Sn(IV)and Sn(II)oxide species are unlikely the catalytic species in CO_(2)electroreduction to formate.展开更多
Proteins and peptides perform a vital role in living systems, however it remains a challenge for accurate description of proteins at the molecular level. Despite that surface-enhanced Raman spectroscopy (SERS) can pro...Proteins and peptides perform a vital role in living systems, however it remains a challenge for accurate description of proteins at the molecular level. Despite that surface-enhanced Raman spectroscopy (SERS) can provide the intrinsic fingerprint information of samples with ultrahigh sensitivity, it suffers from the poor reproducibility and reliability. Herein, we demonstrate that the silver nanorod array fabricated by an oblique angle deposition method is a powerful substrate for SERS to probe the protein secondary structures without exogenous labels. With this method, the SERS signals of two typical proteins (lysozyme and cytochrome c) are successfully obtained. Additionally, by analyzing the spectral signals of the amide Ⅲ of protein backbone, the influence of concentration on the folding status of proteins has been elucidated. With the concentration increasing, the components of α-helix and β-sheet structures of lysozyme increase while the secondary structures of cytochrome c almost keep constant. The SERS method in this work offers an effective optical marker to characterize the structures of proteins.展开更多
As an ultrasensitive sensing technology,the application of surface enhanced Raman spectroscopy(SERS)is one interesting topic of nano-optics,which has huge application prospectives in plenty of research fields.In recen...As an ultrasensitive sensing technology,the application of surface enhanced Raman spectroscopy(SERS)is one interesting topic of nano-optics,which has huge application prospectives in plenty of research fields.In recent years,the bottleneck in SERS application could be the fabrication of SERS substrate with excellent enhancement.In this work,a two-dimensional(2D)Ag nanorice film is fabricated by self-assembly method as a SERS substrate.The collected SERS spectra of various molecules on this 2D plasmonic film demonstrate quantitative detection could be performed on this SERS substrate.The experiment data also demonstrate this 2D plasmonic film consisted of anisotropic nanostructures has no obvious SERS polarization dependence.The simulated electric field distribution points out the SERS enhancement comes from the surface plasmon coupling between nanorices.And the SERS signals is dominated by molecules adsorbed at different regions of nanorice surface at various wavelengths,which could be a good near IR SERS substrate for bioanalysis.Our work not only enlarges the surface plasmon properties of metal nanostructure,but also exhibits the good application prospect in SERS related fields.展开更多
To realize the fast and accurate quantitative analysis of the mixture of polycyclic aromatic hydrocarbons(PAHs),surface-enhanced Raman spectroscopy(SERS)coupled with multivariate calibrations were employed.In this stu...To realize the fast and accurate quantitative analysis of the mixture of polycyclic aromatic hydrocarbons(PAHs),surface-enhanced Raman spectroscopy(SERS)coupled with multivariate calibrations were employed.In this study,three kinds of calibration algorithms were used to quantitative analysis of the mixture of naphthalene(Nap),phenanthrene(Phe),and pyrene(Pyr).Firstly,partial least squares(PLS)algorithm was used to select characteristic variables,then the global search capability of genetic algorithm(GA)was used for the determining of the initial weights and thresholds of back propagation(BP)neural network so that local minima was avoided.The PLS-GA-BP model exhibited superiority to quantify PAHs mixture,which achieved R2=0.9975,0.9710,0.9643,ARE=10.07%,19.28%,16.72%and RMSE=13.10,5.40,5.10 nmol L−1 for Nap,Phe,Pyr(in the PAHs mixture)concentration prediction respectively.The forecast error,ARE and RMSE have been reduced more than 50%and 60%respectively compared with the whole spectral BP model.The study indicates that accurate quantitative spectroscopic analysis of the mixture of PAHs samples can be achieved through the combination of SERS technique and PLS-GA-BP algorithm.展开更多
基金supported by Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park (Project HZQBKCZYB-2020030)National Key R&D Program of China (Project 2017YFA0204403)+2 种基金the National Natural Science Foundation of China (Project 51590892)the Major Program of Changsha Science and Technology (Project kh2003023)the Innovation and Technology Commission of HKSAR through Hong Kong Branch of National Precious Metals Material Engineering Research Centre,and the City University of Hong Kong (Project 9667207)。
文摘Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with complex nanofabrication techniques,greatly restricting their practical applications.A convenient electrochemical method for transforming the surface of commercial gold wires/foils into silver-alloyed nanostructures is demonstrated in this report.Au substrates are treated with repetitive anodic and cathodic bias in an electrolyte of thiourea,in a one-pot one-step manner.X-rays absorption fine structure(XAFS)spectroscopy confirms that the AuAg alloy is induced at the surface.The unique AuAg alloyed surface nanostructures are particularly advantageous when served as SERS substrates,enabling a remarkably sensitive detection of Rhodamine B(a detection limit of 10^(-14)M,and uniform strong response throughout the substrates at 10^(-12)M).
基金This work was supported by the National Natural Science Foundation of China (No. 50073028, 29974036, 20174047).
文摘Surface enhanced Raman scattering (SERS) spectroscopy was first utilized to study the photo-orientation behaviour of the photoreactive groups on a novel photo-alignment film surface and elucidate the generation mechanism of pretilt angle. The novel photo-alignment film was prepared by spin-coating a solution of ladderlike polysiloxane (LPS) bearing dual photoreactive group on an ITO surface and by irradiation with linear-polarized ultraviolet (LPUV) light A Si—H terminal compound (M) containing an identical photosensitive part has been used to fabricate a model film for SERS investigation.
基金National Natural Science Foundation of China(No.51373030)Chinese Universities Scientific Fund(No.CUSF-DH-D-2014023)
文摘The monodisperse Au@Ag bimetallic nanorod is encapsulated by crosslinked poly( N-isopropylacrylamide)( PNIPAM) to produce thermo-responsive composite microgel with well-defined core-shell structure( Au@ Ag NR@ PNIPAM microgel)by seed-precipitation polymerization method using butenoic acid modified Au @ Ag NRs as seeds. When the temperature of the aqueous medium increases from 20℃ to 50℃,the localized surface plasmon resonance( LSPR) band of the entrapped Au @ Ag NR is pronouncedly red-shifted because of the decreased spatial distances between them as a result of shrinkage of the microgels,leading to their plasmonic coupling. The temperature tunable plasmonic coupling is demonstrated by temperature dependence of the surface enhanced Raman spectroscopy( SERS) signal of 1-naphthol in aqueous solution. Different from static plasmonic coupling modes from nanostructured assembly or array system of noble metals,the proposed plasmonic coupling can be dynamically controlled by environmental temperature. Therefore, the thermo responsive hybrid microgels have potential applications in mobile LSPR or SERS microsensors for living tissues or cells.
文摘Colorectal cancer(CRC) is the fourth most commoncancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer.Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting.Raman spectroscopy and surface enhanced Raman spectroscopy(SERS) are forms of vibrational spectroscopy that offer a nondestructive method to gain molecular information about biological samples.The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes,to the use of micro-spectrometers for analysis of biofluids.The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC.The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom.The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed.Finally,future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed.
文摘Electrochemical CO_(2)reduction to formate is a promising approach to store renewable electricity and utilize CO_(2).Tin oxide catalysts are efficient catalysts for this process,while the mechanisms underneath,especially the existence and role of oxidized tin species under CO2 electroreduction conditions remain unclear.In this work,we provide strong evidence on the presence of oxidized tin species on both SnO_(2)and Sn during CO_(2)reduction via in situ surface‐enhanced Raman spectroscopy,while in different nature.Reactivity measurements show similar activity and selectivity to formate production on SnO_(2)and Sn catalysts.Combined analysis of Raman spectra and reactivity results suggests that Sn(IV)and Sn(II)oxide species are unlikely the catalytic species in CO_(2)electroreduction to formate.
基金the National Natural Science Foundation of China (No.61805109 and No.61575087)the Natural Science Foundation of Jiangsu Province (No.BK20170229)+1 种基金the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (No.18KJB180004 and No.16KJB510009)the Natural Science Foundation of Jiangsu Normal University (No.16XLR021).
文摘Proteins and peptides perform a vital role in living systems, however it remains a challenge for accurate description of proteins at the molecular level. Despite that surface-enhanced Raman spectroscopy (SERS) can provide the intrinsic fingerprint information of samples with ultrahigh sensitivity, it suffers from the poor reproducibility and reliability. Herein, we demonstrate that the silver nanorod array fabricated by an oblique angle deposition method is a powerful substrate for SERS to probe the protein secondary structures without exogenous labels. With this method, the SERS signals of two typical proteins (lysozyme and cytochrome c) are successfully obtained. Additionally, by analyzing the spectral signals of the amide Ⅲ of protein backbone, the influence of concentration on the folding status of proteins has been elucidated. With the concentration increasing, the components of α-helix and β-sheet structures of lysozyme increase while the secondary structures of cytochrome c almost keep constant. The SERS method in this work offers an effective optical marker to characterize the structures of proteins.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11974067)Natural Scienceof CQ CSTC (Grant Nos. cstc2019jcyj-msxmX0145, cstc2019jcyj-bshX0042, and cstc2019jcyj-msxmX0828)Sharing Fund of Chongqing University&Large-scale Equipment
文摘As an ultrasensitive sensing technology,the application of surface enhanced Raman spectroscopy(SERS)is one interesting topic of nano-optics,which has huge application prospectives in plenty of research fields.In recent years,the bottleneck in SERS application could be the fabrication of SERS substrate with excellent enhancement.In this work,a two-dimensional(2D)Ag nanorice film is fabricated by self-assembly method as a SERS substrate.The collected SERS spectra of various molecules on this 2D plasmonic film demonstrate quantitative detection could be performed on this SERS substrate.The experiment data also demonstrate this 2D plasmonic film consisted of anisotropic nanostructures has no obvious SERS polarization dependence.The simulated electric field distribution points out the SERS enhancement comes from the surface plasmon coupling between nanorices.And the SERS signals is dominated by molecules adsorbed at different regions of nanorice surface at various wavelengths,which could be a good near IR SERS substrate for bioanalysis.Our work not only enlarges the surface plasmon properties of metal nanostructure,but also exhibits the good application prospect in SERS related fields.
基金National Natural Sci ence Foundation of China(No.41476081)the Major Research and Development Project in Shandong Province(No.2019GHY112027)the Shandong Provincial Natural Science Foundation(No.ZR2020MF121).
文摘To realize the fast and accurate quantitative analysis of the mixture of polycyclic aromatic hydrocarbons(PAHs),surface-enhanced Raman spectroscopy(SERS)coupled with multivariate calibrations were employed.In this study,three kinds of calibration algorithms were used to quantitative analysis of the mixture of naphthalene(Nap),phenanthrene(Phe),and pyrene(Pyr).Firstly,partial least squares(PLS)algorithm was used to select characteristic variables,then the global search capability of genetic algorithm(GA)was used for the determining of the initial weights and thresholds of back propagation(BP)neural network so that local minima was avoided.The PLS-GA-BP model exhibited superiority to quantify PAHs mixture,which achieved R2=0.9975,0.9710,0.9643,ARE=10.07%,19.28%,16.72%and RMSE=13.10,5.40,5.10 nmol L−1 for Nap,Phe,Pyr(in the PAHs mixture)concentration prediction respectively.The forecast error,ARE and RMSE have been reduced more than 50%and 60%respectively compared with the whole spectral BP model.The study indicates that accurate quantitative spectroscopic analysis of the mixture of PAHs samples can be achieved through the combination of SERS technique and PLS-GA-BP algorithm.