期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Review on the Fabrication of Surface Functional Structures for Enhancing Bioactivity of Titanium and Titanium Alloy Implants
1
作者 Heng Tang Jiaxiang Xu +4 位作者 Bin Guo Yansong Xie Yalong Sun Yanjun Lu Yong Tang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期23-49,共27页
Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and ... Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented. 展开更多
关键词 surface functional structure Titanium implant Manufacturing technology Bioactivity
下载PDF
3D Printing of Tough Hydrogel Scaffolds with Functional Surface Structures for Tissue Regeneration
2
作者 Ke Yao Gaoying Hong +11 位作者 Ximin Yuan Weicheng Kong Pengcheng Xia Yuanrong Li Yuewei Chen Nian Liu Jing He Jue Shi Zihe Hu Yanyan Zhou Zhijian Xie Yong He 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期18-45,共28页
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi... Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries. 展开更多
关键词 3D printing Tough hydrogel scaffold functional surface structure Tissue regeneration BIOMATERIALS
下载PDF
Plowing-Extrusion Processes and Performance of Functional Surface Structures of Copper Current Collectors for Lithium-Ion Batteries 被引量:3
3
作者 Chun Wang Wei Yuan +8 位作者 Yu Chen Bote Zhao Yong Tang Shiwei Zhang Xinrui Ding Jun He Songmao Chen Baoyou Pan Mingyue Chen 《Nanomanufacturing and Metrology》 EI 2022年第4期336-353,共18页
Most copper current collectors for commercial lithium-ion batteries(LIBs)are smooth copper foils,which cannot form a stable and effective combination with electrode slurry.They are likely to deform or fall off after l... Most copper current collectors for commercial lithium-ion batteries(LIBs)are smooth copper foils,which cannot form a stable and effective combination with electrode slurry.They are likely to deform or fall off after long-term operation,resulting in a sharp decline in battery performance.What is worse is that this condition inevitably causes internal short circuits and thus brings about security risks.In this study,a process route of fabricating the functional surface structures on the surface of a copper collector for LIBs by twice-crisscross micro-plowing(TCMP)is proposed,which provides a new idea and an efficient method to solve the above problems from the perspective of manufacturing.The finite element simulation of TCMP combined with the cutting force test and morphological characterization is conducted to verify the forming mechanism of the surface structures on a copper sheet and its relationship with the processing parameters.The influence of several key processing parameters on the surface characteristics of the copper sheet is comprehensively explored.A series of functions is tested to obtain the optimal parameters for performance improvement of the current collector.Results show that the structured copper sheet with the cutting distance of 250μm,cutting depth of 80μm,and cutting crossing angle of 90°enables the best surface features of the current collector;the contact angle reaches 0°,the slurry retention rate is up to 89.2%,and the friction coefficient reaches 0.074.The battery using the as-prepared structured copper sheet as the current collector produces a specific capacity of 318.6 mAh/g after 50 cycles at a current density of 0.2 C,which is 132.7%higher than the one based on a smooth surface.The capacity reversibility of the sample with the new current collector is much better than that of the traditional samples,yielding a lower impedance. 展开更多
关键词 Plowing-extrusion Current collector Lithium-ion batteries functional surface structures Contact angle Specific capacity
原文传递
Static response of a layered magneto-electro-elastic half-space structure under circular surface loading
4
作者 Jiangyi Chen Junhong Guo 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第2期145-153,共9页
A cylindrical system of vector functions, the stiffness matrix method and the corresponding recursive algorithm are proposed to investigate the static response of transversely isotropic,layered magneto-electro-elastic... A cylindrical system of vector functions, the stiffness matrix method and the corresponding recursive algorithm are proposed to investigate the static response of transversely isotropic,layered magneto-electro-elastic(MEE) structures over a homogeneous half-space substrate subjected to circular surface loading. In terms of the system of vector functions, we expand the extended displacements and stresses, and deduce two sets of ordinary differential equations, which are related to the expansion coeficients. The solution to one of the two sets of these ordinary differential equations can be evaluated by using the stiffness matrix method and the corresponding recursive algorithm. These expansion coeficients are then integrated by adaptive Gaussian quadrature to obtain the displacements and stresses in the physical domain. Two types of surface loads, mechanical pressure and electric loading,are considered in the numerical examples. The calculated results show that the proposed technique is stable and effective in analyzing the layered half-space MEE structures under surface loading. 展开更多
关键词 Magneto-electro-elastic material Layered and half-space structure Stiffness matrix method System of vector functions surface loading
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部