Powdered activated coke(PAC)is a good adsorbent of SO_(2),but its adsorption capacity is affected by many factors in the preparation process.To prepare the PAC with a high SO_(2)adsorption capacity using JJ-coal under...Powdered activated coke(PAC)is a good adsorbent of SO_(2),but its adsorption capacity is affected by many factors in the preparation process.To prepare the PAC with a high SO_(2)adsorption capacity using JJ-coal under flue gas atmosphere,six parameters(oxygen-coal equivalent ratio,reaction temperature,reaction time,O_(2)concentration,CO_(2)concentration,and H_(2)O concentration)were screened and optimized using the response surface methodology(RSM).The results of factor screening experiment show that reaction temperature,O_(2)concentration,and H_(2)O(g)concentration are the significant factors.Then,a quadratic polynomial regression model between the significant factors and SO_(2)adsorption capacity was established using the central composite design(CCD).The model optimization results indicate that when reaction temperature is 904.74℃,O_(2)concentration is 4.67%,H_(2)O concentration is 27.98%,the PAC(PAC-OP)prepared had a higher SO_(2)adsorption capacity of 68.15 mg/g while its SO_(2)adsorption capacity from a validation experiment is 68.82 mg/g,and the error with the optimal value is 0.98%.Compared to two typical commercial activated cokes(ACs),PAC-OP has relatively more developed pore structures,and its SBET and Vtot are 349 m^(2)/g and 0.1475 cm3/g,significantly higher than the 186 m^(2)/g and 0.1041 cm3/g of AC1,and the 132 m^(2)/g and 0.0768 cm3/g of AC2.Besides,it also has abundant oxygen-containing functional groups,its surface O content being 12.09%,higher than the 10.42%of AC1 and 10.49%of AC2.Inevitably,the SO_(2)adsorption capacity of PAC-OP is also significantly higher than that of both AC1 and AC2,which is 68.82 mg/g versus 32.53 mg/g and 24.79 mg/g,respectively.展开更多
Surface plasmon resonance (SPR) sensor based on the blue phosphorene/MoS2 hetero-structure is presented to enhance the performance parameters, i.e., sensitivity, detection accuracy, and quality fhctor.The blue phospho...Surface plasmon resonance (SPR) sensor based on the blue phosphorene/MoS2 hetero-structure is presented to enhance the performance parameters, i.e., sensitivity, detection accuracy, and quality fhctor.The blue phosphorene/MoS2 hetero-structure works as an interacting layer with the analyte for the enhancement of the sensitivity of the sensor. It is observed that the sensitivity of blue phosphorene/MoS2 based sensor (i.e., structure-Ⅱ) is improved by 5.75%, from the conventional sensor (i.e., structure-Ⅲ). Further, an additional silicon nanolayer is introduced between the metal layer and blue phosphorene/MoS2 hetero-structure. The sensitivity of the proposed blue phosphorene/MoS2 hetero-structure with a silicon layer SPR sensor, i.e., structure-Ⅰ, is enhanced by 44.76% from structure-Ⅱ and 55.75% from structure-Ⅲ due to an enhancement in the evanescent field near the metal-analyte interface. Finally, it is observed that at the optimum thickness of silicon between the gold layer and blue phosphorene/MoS2, performance parameters of the sensor are enhanced.展开更多
基金This work was financial supported by the National Key R&D Program of China(Grant No.2017YFB0602902).
文摘Powdered activated coke(PAC)is a good adsorbent of SO_(2),but its adsorption capacity is affected by many factors in the preparation process.To prepare the PAC with a high SO_(2)adsorption capacity using JJ-coal under flue gas atmosphere,six parameters(oxygen-coal equivalent ratio,reaction temperature,reaction time,O_(2)concentration,CO_(2)concentration,and H_(2)O concentration)were screened and optimized using the response surface methodology(RSM).The results of factor screening experiment show that reaction temperature,O_(2)concentration,and H_(2)O(g)concentration are the significant factors.Then,a quadratic polynomial regression model between the significant factors and SO_(2)adsorption capacity was established using the central composite design(CCD).The model optimization results indicate that when reaction temperature is 904.74℃,O_(2)concentration is 4.67%,H_(2)O concentration is 27.98%,the PAC(PAC-OP)prepared had a higher SO_(2)adsorption capacity of 68.15 mg/g while its SO_(2)adsorption capacity from a validation experiment is 68.82 mg/g,and the error with the optimal value is 0.98%.Compared to two typical commercial activated cokes(ACs),PAC-OP has relatively more developed pore structures,and its SBET and Vtot are 349 m^(2)/g and 0.1475 cm3/g,significantly higher than the 186 m^(2)/g and 0.1041 cm3/g of AC1,and the 132 m^(2)/g and 0.0768 cm3/g of AC2.Besides,it also has abundant oxygen-containing functional groups,its surface O content being 12.09%,higher than the 10.42%of AC1 and 10.49%of AC2.Inevitably,the SO_(2)adsorption capacity of PAC-OP is also significantly higher than that of both AC1 and AC2,which is 68.82 mg/g versus 32.53 mg/g and 24.79 mg/g,respectively.
文摘Surface plasmon resonance (SPR) sensor based on the blue phosphorene/MoS2 hetero-structure is presented to enhance the performance parameters, i.e., sensitivity, detection accuracy, and quality fhctor.The blue phosphorene/MoS2 hetero-structure works as an interacting layer with the analyte for the enhancement of the sensitivity of the sensor. It is observed that the sensitivity of blue phosphorene/MoS2 based sensor (i.e., structure-Ⅱ) is improved by 5.75%, from the conventional sensor (i.e., structure-Ⅲ). Further, an additional silicon nanolayer is introduced between the metal layer and blue phosphorene/MoS2 hetero-structure. The sensitivity of the proposed blue phosphorene/MoS2 hetero-structure with a silicon layer SPR sensor, i.e., structure-Ⅰ, is enhanced by 44.76% from structure-Ⅱ and 55.75% from structure-Ⅲ due to an enhancement in the evanescent field near the metal-analyte interface. Finally, it is observed that at the optimum thickness of silicon between the gold layer and blue phosphorene/MoS2, performance parameters of the sensor are enhanced.