BL02U2 of the Shanghai Synchrotron Radiation Facility is a surface diffraction beamline with a photon flux of 5.5×10^(12) photons/s at 10 keV and a beam size of 160µm×80µm at the sample site.It is ...BL02U2 of the Shanghai Synchrotron Radiation Facility is a surface diffraction beamline with a photon flux of 5.5×10^(12) photons/s at 10 keV and a beam size of 160µm×80µm at the sample site.It is dedicated to studying surfaces(solid-vacuum,solid-gas)and interfaces(solid-solid,solid-liquid,and liquid-liquid)in nanoscience,condensed matter,and soft matter systems using various surface scattering techniques over an energy range of 4.8-28 keV with transmission and reflection modes.Moreover,BL02U2 has a high energy resolution,high angular resolution,and low beam divergence,which can provide excellent properties for X-ray diffraction experiments,such as grazing incident X-ray diffraction,X-ray reflectivity,crystal truncation rods,and liquid X-ray scattering.Diversity of in situ environments can also be provided for the samples studied.This paper describes the setup of the new beamline and its applications in various fields.展开更多
A CuPc/SiO2 sample is fabricated. Its morphology is characterized by atomic force microscopy, and the electron states are investigated by X-ray photoelectron spectroscopy. In order to investigate these spectra in deta...A CuPc/SiO2 sample is fabricated. Its morphology is characterized by atomic force microscopy, and the electron states are investigated by X-ray photoelectron spectroscopy. In order to investigate these spectra in detail, all of these spectra are normalized to the height of the most intense peak,and each component is fitted with a single Gaussian function. Analysis shows that the O element has great bearing on the electron states and that SiO2 layers produced by spurting technology are better than those produced by oxidation technology.展开更多
To date,much efforts have been devoted to the high-efficiency noble metal-free electrocatalysts for hydrogen-and oxygen-involving energy conversion reactions,due to their abundance,low cost and nultifunctionally.Surfa...To date,much efforts have been devoted to the high-efficiency noble metal-free electrocatalysts for hydrogen-and oxygen-involving energy conversion reactions,due to their abundance,low cost and nultifunctionally.Surface/interface engineering is found to be effective in achieving novel physicochemical properties and synergistic effects in nanomaterials for electrocatalysis.Among various engineering strategies,heteroatom-doping has been regarded as a most promising method to improve the electrocatalytic performance via the regulation of electronic structure of catalysts,and numerous works were reported on the synthesis method and mechanism investigation of heteroatom-doping electrocatalysts,though the heteroatom-doping can only provide limited active sites.Engineering of other defects such as vacancies and edge sites and construction of heterostructure have shown to open up a potential avenue for the development of noble metal-free electrocatalysts.In addition,surface functionalization can attach various molecules onto the surface of materials to easily modify their physical or chemical properties,being as a promising complement or substitute for offering materials with catalytic properties.This paper gives the insights into the diverse strategies of surface/interface engineering of the highefficiency noble metal-free electrocatalysts for energy-related electrochemical reactions.The significant advances are summarized.The unique advantages and mechanisms for specific applications are highlighted.The current challenges and outlook of this growing field are also discussed.展开更多
Zn-air batteries(ZABs),especially the secondary batteries,have engrossed a great interest because of its high specific energy,economical and high safety.However,due to the insufficient activity and stability of bifunc...Zn-air batteries(ZABs),especially the secondary batteries,have engrossed a great interest because of its high specific energy,economical and high safety.However,due to the insufficient activity and stability of bifunctional electrocatalysts for air-cathode oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)processes,the practical application of rechargeable ZABs is seriously hindered.In the effort of developing high active,stable and cost-effective electrocatalysts,transition metal nitrides(TMNs)have been regarded as the candidates due to their high conductivity,strong corrosion-resistance,and bifunctional catalytic performance.In this paper,the research progress in TMNs-based material as ORR and OER electrocatalysts for ZABs is discussed with respect to their synthesis,chemical/physical characterization,and performance validation/optimization.The surface/interface nanoengineering strategies such as defect engineering,support binding,heteroatom introduction,crystal plane orientation,interface construction and small size effect,the physical and chemical properties of TMNs-based electrocatalysts are emphasized with respect to their structures/morphologies,composition,electrical conductivity,specific surface area,chemical stability and corrosion resistance.The challenges of TMNs-based materials as bifunctional air-cathode electrocatalysts in practical application are evaluated,and numerous research guidelines to solve these problems are put forward for facilitating further research and development.展开更多
The polar interface optical (IO) and surface optical (SO) phonon modes and the corresponding Froehlich electron phonon-interaction Hamiltonian in a freestanding multi-layer wurtzite cylindrical quantum wire (QWR...The polar interface optical (IO) and surface optical (SO) phonon modes and the corresponding Froehlich electron phonon-interaction Hamiltonian in a freestanding multi-layer wurtzite cylindrical quantum wire (QWR) are derived and studied by employing the transfer matrix method in the dielectric continuum approximation and Loudon's uniaxial crystal model. A numerical calculation of a freestanding wurtzite GaN/AlN QWR is performed. The results reveal that for a relatively large azimuthal quantum number m or wave-number kz in the free z-direction, there exist two branches of IO phonon modes localized at the interface, and only one branch of SO mode localized at the surface in the system. The degenerating behaviours of the IO and SO phonon modes in the wurtzite QWR have also been clearly observed for a small kz or m. The limiting frequency properties of the IO and SO modes for large kz and m have been explained reasonably from the mathematical and physical viewpoints. The calculations of electron-phonon coupling functions show that the high-frequency IO phonon branch and SO mode play a more important role in the electron phonon interaction.展开更多
In this paper, we present an analytical solution of the interaction of the nanotube (NT) with a wedge disclination dipole in nanotube-based composites. The corresponding boundary value problem is solved exactly by u...In this paper, we present an analytical solution of the interaction of the nanotube (NT) with a wedge disclination dipole in nanotube-based composites. The corresponding boundary value problem is solved exactly by using complex potential functions. The explicit expression of the force exerted on disclination dipole is given by using the generalized Peach- Koehler formula. As a numerical illustration, both the equilibrium position and the stability of the disclination dipole are evaluated for different material combinations, relative thickness of an NT, surface/interface effects, and the features of the disclination dipole. The results show that as the thickness of the NT layer increases, the NT has a relatively major role in the force acting on the disclination dipole in the NT-based composite. The cooperative effect of surface/interface stresses and the NT becomes considerable as the increase of NT layer thickness. The equilibrium position may occur, even more than one, due to the influences of the surface/interface stress and the NT thickening. The influences of the surface/interface stresses and the thickness of the NT layer on the force are greatly dependent on the disclination angle.展开更多
In this paper, the shape problem of interface of bicomponent flows between two concentric rotating cylinders is investigated. With tensor analysis, the problem is reduced to an energy functional isoperimetric problem ...In this paper, the shape problem of interface of bicomponent flows between two concentric rotating cylinders is investigated. With tensor analysis, the problem is reduced to an energy functional isoperimetric problem when neglecting the effects of the dissipative energy caused by viscosity. We derive the associated Euler-Lagrangian equation, which is a nonlinear elliptic boundary value problem of the second order. Moreover, by considering the effects of the dissipative energy, we propose another total energy functional to characterize the geometric shape of the interface, and obtain the corresponding Euler-Lagrangian equation, which is also a nonlinear elliptic boundary value problem of the second order. Thus, the problem of the geometric shape is converted into a nonlinear boundary value problem of the second order in both cases.展开更多
Based on the first-principles method, the structural stability and the contribution of point defects such as O, Sr or Ti vacancies on two-dimensional electron gas of n- and p-type LaAlO3/SrTiO3 interfaces are investig...Based on the first-principles method, the structural stability and the contribution of point defects such as O, Sr or Ti vacancies on two-dimensional electron gas of n- and p-type LaAlO3/SrTiO3 interfaces are investigated. The results show that O vacancies at p-type interfaces have much lower formation energies, and Sr or Ti vacancies at n-type interfaces are more stable than the ones at p-type interfaces under O-rich conditions. The calculated densities of states indicate that O vacancies act as donors and give a significant compensation to hole carriers, resulting in insulating behavior at p-type interfaces. In contrast, Sr or Ti vacancies tend to trap electrons and behave as acceptors. Sr vacancies are the most stable defects at high oxygen partial pressures, and the Sr vacancies rather than Ti vacancies are responsible for the insulator-metal transition of n-type interface. The calculated results can be helpful to understand the tuned electronic properties of LaAlO3 /SrTiO3 heterointerfaces.展开更多
The interface and surface properties of nano-hydroxyapatite(n-HA) and poly( 1, 4-phenylene sulfide)-poly (2,4-phenylene sulfide acid)(PPS-PPSA) copolymer composite were investigated. The results show that there are so...The interface and surface properties of nano-hydroxyapatite(n-HA) and poly( 1, 4-phenylene sulfide)-poly (2,4-phenylene sulfide acid)(PPS-PPSA) copolymer composite were investigated. The results show that there are some strong interface combinations of calcium ion (Ca2+ ), car-boxyl (-COO- ) and phosphate radicle ion (PO_4~3- ) between copolymer and n-HA in the composite. The presence of the 2,4-phenylene sulfide acid in copolymer can increase the affinity to n-HA, which causes the formation of chemical bindings between the PPS-PPSA copolymer and n-HA. XRD analysis and IR surface analysis indicate that n-HA is not encapsulated by copolymer but exposed on the surface of the composite, and has same structure and properties with the origi-nal n-HA. The presence of the interface chemical bindings between the PPS-PPSA copolymer and n-HA can increase the content of n-HA in composite but does not cause the decrease of the composite mechanical strength.展开更多
Ultrafast laser processing technology has offered a wide range of opportunities in micro/nano fabrication and other fields such as nanotechnology,biotechnology,energy science,and photonics due to its controllable proc...Ultrafast laser processing technology has offered a wide range of opportunities in micro/nano fabrication and other fields such as nanotechnology,biotechnology,energy science,and photonics due to its controllable processing precision,diverse processing capabilities,and broad material adaptability.The processing abilities and applications of the ultrafast laser still need more exploration.In the field of material processing,controlling the atomic scale structure in nanomaterials is challenging.Complex effects exist in ultrafast laser surface/interface processing,making it difficult to modulate the nanostructure and properties of the surface/interface as required.In the ultrafast laser fabrication of micro functional devices,the processing ability needs to be improved.Here,we review the research progress of ultrafast laser micro/nano fabrication in the areas of material processing,surface/interface controlling,and micro functional devices fabrication.Several useful ultrafast laser processing methods and applications in these areas are introduced.With various processing effects and abilities,the ultrafast laser processing technology has demonstrated application values in multiple fields from science to industry.展开更多
Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature condit...Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature conditions(below0°C and above 50 °C).Here,we report the design of F/Mo co-doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(FMNCM)cathode for high-performance LIBs from-20 to 60°C.F^(-) doping with high electronegativity into the cathode surface is found to enhance the stability of surface lattice structure and protect the interface from side reactions with the electrolyte by generating a LiF-rich surface layer.Concurrently,the Mo^(6+) doping suppresses phase transition,which blocks Li^(+)/Ni^(2+) mixing,and stabilizes lithium-ion diffusion pathway.Remarkably,the FMNCM cathode demonstrates excellent cycling stability at a high cutoff voltage of 4.4 V,even at 60°C,maintaining 90.6%capacity retention at 3 C after 150 cycles.Additionally,at temperatures as low as-20°C,it retains 77.1%of its room temperature capacity,achieving an impressive 97.5%capacity retention after 500 cycles.Such stable operation under wide temperatures has been further validated in practical Ah-level pouch-cells.This study sheds light on both fundamental mechanisms and practical implications for the design of advanced cathode materials for wide-temperature LIBs,presenting a promising path towards high-energy and long-cycling LIBs with temperatureadaptability.展开更多
Photocatalytic water splitting using semiconductor photocatalysts is a promising approach for the production of carbon-neutral,sustainable and clean hydrogen fuel.However,the separation and transport of photoinduced c...Photocatalytic water splitting using semiconductor photocatalysts is a promising approach for the production of carbon-neutral,sustainable and clean hydrogen fuel.However,the separation and transport of photoinduced carriers are generally considered to be rate-limiting steps,and their low efficiency remains a major challenge.Therefore,much effort has been devoted to developing new strategies in surface/interface engineering of photocatalysts to improve the dynamics of charge separation/transport.This feature article briefly summarizes recent advances in photocatalyst surface/interface engineering by our research group,which have been achieved through the design of various novel photocatalysts,including interfacial modulation,heterostructure construction,heteroatom doping,single atom and diatom sites.The article is divided into three parts:first,we briefly introduce the three key processes involved in solar water splitting and reveal relationships between the properties of nanostructural photocatalysts and the fundamentals of water splitting;second,we detail methods and strategies for surface and interfacial structures to improve the efficiency of the fundamental processes,especially charge separation;finally,we explore prospects for photocatalytic water splitting applications.This article provides a valuable resource and strategies for researchers currently working in the field of photocatalytic water splitting.展开更多
6H-SiC (1010) surface and Si (220)/6H-SIC (1010) interface with different stacking sites are investigated using first-principles calculations. Surface energies of 6H-SiC (1010) (case I, case II, and case III...6H-SiC (1010) surface and Si (220)/6H-SIC (1010) interface with different stacking sites are investigated using first-principles calculations. Surface energies of 6H-SiC (1010) (case I, case II, and case III) are firstly studied and the surface calculation results show that case II and case III are more stable than case I. Then, the adhesion energies, fracture toughness values, interfacial energies, densities of states, and electronic structures of Si (220)/6H-SIC (1010) interfaces for three stacking models (AM, BM, and CM) are calculated. The CM model has the highest adhesion energy and the lowest interracial energy, suggesting that the CM is stronger and more thermodynamically stable than AM and BM. Densities of states and the total charge densities give evidence that interfacial bonding is formed at the interface and that Si-Si and Si-C are induced due to the hybridization of C-2p and Si-3p. Moreover, the Si-C is much stronger than Si-Si at the interface, implying that the contribution of the interfacial bonding mainly comes from Si-C rather than Si-Si.展开更多
Nucleate pool boiling on micro-pin-finned surface structure is proposed for efficiently cooling electronic compo- nents with high heat flux in microgravity, and was verified by experiments performed utilizing the drop...Nucleate pool boiling on micro-pin-finned surface structure is proposed for efficiently cooling electronic compo- nents with high heat flux in microgravity, and was verified by experiments performed utilizing the drop tower Beijing. Micro-pin-fins with tile dimensions of 50 × (30 μm2 (thickness × height) and the space of 50 μm were fabricated on the chip surface by the dry etching technique. FC-72 was used as the working fluid. Nucleate pool boiling of FC-72 on a smooth surface was also tested for comparison. Unlike much obvious deterioration of heat transfer of nucleate pool boiling on the smooth surface in microgravity, constant heater surface temperature of nucleate pool boiling for the micro-pin-finned surface was observed, even though a large coalesced bubble completely covered the surface under microgravity condition. The performance of high efficient heat transfer on micro-pin-finned surface is independent of the gravity, which stems from the sufficient supply of fresh liquid to the heater surface due to the capillary forces.展开更多
This work deals with the influences of nano-heterogeneities in the form of voids/cavities or cracks on the elastic (please confirm which word is correct. effective or elastic? According to the title of paper, I choose...This work deals with the influences of nano-heterogeneities in the form of voids/cavities or cracks on the elastic (please confirm which word is correct. effective or elastic? According to the title of paper, I choose elastic.) properties of a host medium. With a relatively large ratio of apparent-surface to volume and particularly strong physical interactions with the surrounding medium at nano-scale, nano-heterogeneities can potentially affect the elastic(effective or elastic?) properties of the parent medium (matrix) containing them in a significant manner. This has been reported by various theoretical and experimental studies, some of them are discussed in the present paper. To describe the positive (reinforcement) or negative (degradation) effect of the nano-heterogeneities from the modeling perspective, it is necessary to take into account the energy of interfaces/surfaces between nano-heterogeneities and the matrix which, by the fact of the relatively large extent of their apparent surface and their strong physical interaction with their neighborhood, can no longer be neglected compared to those of the volume energy. Thus, to account for the effects of interfaces/surfaces in a nanostructured heterogeneous medium, the coherent interface model is considered in the present investigation within a periodic homogenization procedure. In this interface/surface model, the displacement vector is assumed to be continuous across the interface while the stress vector is considered to be discontinuous and satisfying the Laplace-Young equations. To solve these equations coupled to the classical mechanical equilibrium problem, a numerical simulation tool is developed in a two-dimensional (2D) context using the eXtended Finite Element Method (XFEM) and the Level-Set functions. The developed numerical tool is then used to carry out a detailed analysis about the effect of nano-heterogeneities on the overall mechanical properties of a medium. The nano-heterogeneities are present in the medium initially as cylindrical cavities (circular in 2D) before being reduced to plane cracks (line in 2D) by successive flattenings.展开更多
Sum frequency generation(SFG) vibrational spectroscopy has been proven an excellent tool to measure the molecular structures, symmetries and orientations at surfaces/interfaces because of its strong polarization depen...Sum frequency generation(SFG) vibrational spectroscopy has been proven an excellent tool to measure the molecular structures, symmetries and orientations at surfaces/interfaces because of its strong polarization dependence. However, a precise quantitative analysis of SFG spectral intensity and molecular orientation at interfaces must be carefully performed. In this work, we summarized the parameters and factors that are often ignored and illustrated them by evaluating studies of CO adsorption on the(111) facet of platinum(Pt) and palladium(Pd) single crystals at the gas(ultra-high vacuum, UHV)/solid interfaces and methanol(water) adsorption at the air/liquid(solid/liquid) interfaces in the presence of sodium iodide(chloride) salts. To intuitively estimate the influence of incidence angles and refractive indices on the SFG intensity, solely a defined factor of|Fyyz| was discussed, which can be individually separated from the macroscopic second-order non-linear susceptibility χ yyz^(2) term and represents the SSP intensity. Moreover, effects of refractive indices and the molecular hyperpolarizability ratio(R) were discussed in the orientational analysis of interfacial CO and methanol molecules. When IPPP/ISSP was identical, molecules with a larger R had smaller tilting angles(q) on Pt(assuming q < 51°), and CO molecules on Pd would tilt much closer to the surface than they did on Pt. A total internal reflection(TIR) geometry enhanced the SFG intensity, but it also amplified the influence of refractive index on SFG intensity at the solid(silica)/liquid interface. The refractive index and R-value had similar influence on the methanol orientation in the presence of sodium iodide salts at air/liquid and solid/liquid interfaces. This work should provide a guideline for analyzing the orientation of molecules with different R, which are adsorbed on catalysts or located at liquid interfaces involving changes of refractive indices.展开更多
In order to restore the degraded ultrasonic C-scan image for testing surfacing inteoface, a method based on support vector regression (SVR) network is proposed. By using the image of a simulating defect, the network...In order to restore the degraded ultrasonic C-scan image for testing surfacing inteoface, a method based on support vector regression (SVR) network is proposed. By using the image of a simulating defect, the network is trained and a mapping relationship between the degraded and restored image is founded. The degraded C-scan image of Cu-Steel surfacing inteoface is processed by the trained network and improved image is obtained. The result shows that the method can effectively suppress the noise and deblur the defect edge in the image, and provide technique support for quality and reliability evaluation of the surfacing weld.展开更多
The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we develope...The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we developed a spin-state and delocalized electron regulation method to optimize oxygen evolution reaction(OER)performance by in-situ growth of NiCo_(2)(OH)_(x) using Oswald ripening and coordinating etching process on MXene and plasma treatment.X-ray absorption spectroscopy,magnetic tests and electron paramagnetic resonance reveal that the coupling of NiCo_(2)(OH)_(x) and MXene can induce remarkable spin-state transition of Co^(3+)and transition metal ions electron delocalization,plasma treatment further optimizes the 3 d orbital structure and delocalized electron density.The unique Jahn-Teller phenomenon can be brought by the intermediate spin state(t2 _(g)^(5) e_(g)^(1))of Co^(3+),which benefits from the partial electron occupied egorbitals.This distinct electron configuration(t2_(g)^(5) e_(g)^(1))with unpaired electrons leads to orbital degeneracy,that the adsorption free energy of intermediate species and conductivity were further optimized.The optimized electrocatalyst exhibits excellent OER activity with an overpotential of 268 m V at 10 m A cm^(-2).DFT calculations show that plasma treatment can effectively regulate the d-band center of TMs to optimize the adsorption and improve the OER activity.This approach could guide the rational design and discovery of electrocatalysts with ideal electron configurations in the future.展开更多
Synchrotron radiation photoemission spectroscopy was used to study the formation process of Er2O3/Si(001) imerface and film during epitaxial growth on Si. A shift in the O core-level binding energy was found accompa...Synchrotron radiation photoemission spectroscopy was used to study the formation process of Er2O3/Si(001) imerface and film during epitaxial growth on Si. A shift in the O core-level binding energy was found accompanied by a shift in the Er2O3 valence band maximum. This shift depended on the oxide layer thickness and interfacial structure. An interfacial layer was observed at the initial growth of Er2O3 film on Si, which was supposed to be attributed to the effect of Er atom catalytic oxidation effect.展开更多
The elementary beam model is modified to include the surface effects and used to analyze the deflections of nanowires under different boundary conditions. Tile results show that compared to deflections of nanowires wi...The elementary beam model is modified to include the surface effects and used to analyze the deflections of nanowires under different boundary conditions. Tile results show that compared to deflections of nanowires without consideration of surface effects, the surface effects can enlarge or reduce deflections of nanowires, and nanowire buckling occurs under certain conditions. This study might be helpful for design of nanowire-based nanoelectromechanical systems.展开更多
基金National Natural Science Foundation of China(Nos.12275344,12304132)National Key Research and Development Program of China(No.2022YFA1603901).
文摘BL02U2 of the Shanghai Synchrotron Radiation Facility is a surface diffraction beamline with a photon flux of 5.5×10^(12) photons/s at 10 keV and a beam size of 160µm×80µm at the sample site.It is dedicated to studying surfaces(solid-vacuum,solid-gas)and interfaces(solid-solid,solid-liquid,and liquid-liquid)in nanoscience,condensed matter,and soft matter systems using various surface scattering techniques over an energy range of 4.8-28 keV with transmission and reflection modes.Moreover,BL02U2 has a high energy resolution,high angular resolution,and low beam divergence,which can provide excellent properties for X-ray diffraction experiments,such as grazing incident X-ray diffraction,X-ray reflectivity,crystal truncation rods,and liquid X-ray scattering.Diversity of in situ environments can also be provided for the samples studied.This paper describes the setup of the new beamline and its applications in various fields.
文摘A CuPc/SiO2 sample is fabricated. Its morphology is characterized by atomic force microscopy, and the electron states are investigated by X-ray photoelectron spectroscopy. In order to investigate these spectra in detail, all of these spectra are normalized to the height of the most intense peak,and each component is fitted with a single Gaussian function. Analysis shows that the O element has great bearing on the electron states and that SiO2 layers produced by spurting technology are better than those produced by oxidation technology.
基金supported by the Natural Science Foundation of Shandong Province(ZR2019PB013)the Natural Science Foundation of Tianjin(19JCZDJC37700)the National Natural Science Foundation of China(21421001 and 21875118)。
文摘To date,much efforts have been devoted to the high-efficiency noble metal-free electrocatalysts for hydrogen-and oxygen-involving energy conversion reactions,due to their abundance,low cost and nultifunctionally.Surface/interface engineering is found to be effective in achieving novel physicochemical properties and synergistic effects in nanomaterials for electrocatalysis.Among various engineering strategies,heteroatom-doping has been regarded as a most promising method to improve the electrocatalytic performance via the regulation of electronic structure of catalysts,and numerous works were reported on the synthesis method and mechanism investigation of heteroatom-doping electrocatalysts,though the heteroatom-doping can only provide limited active sites.Engineering of other defects such as vacancies and edge sites and construction of heterostructure have shown to open up a potential avenue for the development of noble metal-free electrocatalysts.In addition,surface functionalization can attach various molecules onto the surface of materials to easily modify their physical or chemical properties,being as a promising complement or substitute for offering materials with catalytic properties.This paper gives the insights into the diverse strategies of surface/interface engineering of the highefficiency noble metal-free electrocatalysts for energy-related electrochemical reactions.The significant advances are summarized.The unique advantages and mechanisms for specific applications are highlighted.The current challenges and outlook of this growing field are also discussed.
基金financial support from the National Key Research and Development Program of China(2017YFB0102900)
文摘Zn-air batteries(ZABs),especially the secondary batteries,have engrossed a great interest because of its high specific energy,economical and high safety.However,due to the insufficient activity and stability of bifunctional electrocatalysts for air-cathode oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)processes,the practical application of rechargeable ZABs is seriously hindered.In the effort of developing high active,stable and cost-effective electrocatalysts,transition metal nitrides(TMNs)have been regarded as the candidates due to their high conductivity,strong corrosion-resistance,and bifunctional catalytic performance.In this paper,the research progress in TMNs-based material as ORR and OER electrocatalysts for ZABs is discussed with respect to their synthesis,chemical/physical characterization,and performance validation/optimization.The surface/interface nanoengineering strategies such as defect engineering,support binding,heteroatom introduction,crystal plane orientation,interface construction and small size effect,the physical and chemical properties of TMNs-based electrocatalysts are emphasized with respect to their structures/morphologies,composition,electrical conductivity,specific surface area,chemical stability and corrosion resistance.The challenges of TMNs-based materials as bifunctional air-cathode electrocatalysts in practical application are evaluated,and numerous research guidelines to solve these problems are put forward for facilitating further research and development.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60276004 and 60390073) and the Natural Science Foundation of Guangzhou Education Bureau, China (Grant No 2060). Acknowledgement The author would like to thank Professor J J Shi for detailed and valuable discussion.
文摘The polar interface optical (IO) and surface optical (SO) phonon modes and the corresponding Froehlich electron phonon-interaction Hamiltonian in a freestanding multi-layer wurtzite cylindrical quantum wire (QWR) are derived and studied by employing the transfer matrix method in the dielectric continuum approximation and Loudon's uniaxial crystal model. A numerical calculation of a freestanding wurtzite GaN/AlN QWR is performed. The results reveal that for a relatively large azimuthal quantum number m or wave-number kz in the free z-direction, there exist two branches of IO phonon modes localized at the interface, and only one branch of SO mode localized at the surface in the system. The degenerating behaviours of the IO and SO phonon modes in the wurtzite QWR have also been clearly observed for a small kz or m. The limiting frequency properties of the IO and SO modes for large kz and m have been explained reasonably from the mathematical and physical viewpoints. The calculations of electron-phonon coupling functions show that the high-frequency IO phonon branch and SO mode play a more important role in the electron phonon interaction.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11172094 and 11172095)the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No.NCET-11-0122)the Hunan Provincial Natural Science Foundation for Creative Research Groups,China(Grant No.12JJ7001)
文摘In this paper, we present an analytical solution of the interaction of the nanotube (NT) with a wedge disclination dipole in nanotube-based composites. The corresponding boundary value problem is solved exactly by using complex potential functions. The explicit expression of the force exerted on disclination dipole is given by using the generalized Peach- Koehler formula. As a numerical illustration, both the equilibrium position and the stability of the disclination dipole are evaluated for different material combinations, relative thickness of an NT, surface/interface effects, and the features of the disclination dipole. The results show that as the thickness of the NT layer increases, the NT has a relatively major role in the force acting on the disclination dipole in the NT-based composite. The cooperative effect of surface/interface stresses and the NT becomes considerable as the increase of NT layer thickness. The equilibrium position may occur, even more than one, due to the influences of the surface/interface stress and the NT thickening. The influences of the surface/interface stresses and the thickness of the NT layer on the force are greatly dependent on the disclination angle.
基金the National Natural Science Foundation of China(Nos.10571142,10771167)
文摘In this paper, the shape problem of interface of bicomponent flows between two concentric rotating cylinders is investigated. With tensor analysis, the problem is reduced to an energy functional isoperimetric problem when neglecting the effects of the dissipative energy caused by viscosity. We derive the associated Euler-Lagrangian equation, which is a nonlinear elliptic boundary value problem of the second order. Moreover, by considering the effects of the dissipative energy, we propose another total energy functional to characterize the geometric shape of the interface, and obtain the corresponding Euler-Lagrangian equation, which is also a nonlinear elliptic boundary value problem of the second order. Thus, the problem of the geometric shape is converted into a nonlinear boundary value problem of the second order in both cases.
基金Supported by the National Natural Science Foundation of China Under Grant No 61205180the Natural Science Foundation of Hebei Province under Grant No E2014201188+1 种基金the Hebei University Science Funds for Distinguished Young Scholars under Grant No 2012JQ01the Program for Top Young Talents of Hebei Province
文摘Based on the first-principles method, the structural stability and the contribution of point defects such as O, Sr or Ti vacancies on two-dimensional electron gas of n- and p-type LaAlO3/SrTiO3 interfaces are investigated. The results show that O vacancies at p-type interfaces have much lower formation energies, and Sr or Ti vacancies at n-type interfaces are more stable than the ones at p-type interfaces under O-rich conditions. The calculated densities of states indicate that O vacancies act as donors and give a significant compensation to hole carriers, resulting in insulating behavior at p-type interfaces. In contrast, Sr or Ti vacancies tend to trap electrons and behave as acceptors. Sr vacancies are the most stable defects at high oxygen partial pressures, and the Sr vacancies rather than Ti vacancies are responsible for the insulator-metal transition of n-type interface. The calculated results can be helpful to understand the tuned electronic properties of LaAlO3 /SrTiO3 heterointerfaces.
文摘The interface and surface properties of nano-hydroxyapatite(n-HA) and poly( 1, 4-phenylene sulfide)-poly (2,4-phenylene sulfide acid)(PPS-PPSA) copolymer composite were investigated. The results show that there are some strong interface combinations of calcium ion (Ca2+ ), car-boxyl (-COO- ) and phosphate radicle ion (PO_4~3- ) between copolymer and n-HA in the composite. The presence of the 2,4-phenylene sulfide acid in copolymer can increase the affinity to n-HA, which causes the formation of chemical bindings between the PPS-PPSA copolymer and n-HA. XRD analysis and IR surface analysis indicate that n-HA is not encapsulated by copolymer but exposed on the surface of the composite, and has same structure and properties with the origi-nal n-HA. The presence of the interface chemical bindings between the PPS-PPSA copolymer and n-HA can increase the content of n-HA in composite but does not cause the decrease of the composite mechanical strength.
基金supported by the National Natural Science Foundation of China(No.52075289)the Tsinghua-Jiangyin Innovation Special Fund(TJISF,No.2023JYTH0104).
文摘Ultrafast laser processing technology has offered a wide range of opportunities in micro/nano fabrication and other fields such as nanotechnology,biotechnology,energy science,and photonics due to its controllable processing precision,diverse processing capabilities,and broad material adaptability.The processing abilities and applications of the ultrafast laser still need more exploration.In the field of material processing,controlling the atomic scale structure in nanomaterials is challenging.Complex effects exist in ultrafast laser surface/interface processing,making it difficult to modulate the nanostructure and properties of the surface/interface as required.In the ultrafast laser fabrication of micro functional devices,the processing ability needs to be improved.Here,we review the research progress of ultrafast laser micro/nano fabrication in the areas of material processing,surface/interface controlling,and micro functional devices fabrication.Several useful ultrafast laser processing methods and applications in these areas are introduced.With various processing effects and abilities,the ultrafast laser processing technology has demonstrated application values in multiple fields from science to industry.
基金the financial support from the National Natural Science Foundation of China(51972156,52072378,52102054 and 51927803)the National Key R&D Program of China(2022YFB3803400,2021YFB3800301)+2 种基金the Shenyang Science and Technology Program(22-322-3-19)the Youth Fund of the Education Department of Liaoning Province(LJKQZ20222324)the Outstanding Youth Fund of University of Science and Technology Liaoning(2023YQ11).
文摘Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature conditions(below0°C and above 50 °C).Here,we report the design of F/Mo co-doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(FMNCM)cathode for high-performance LIBs from-20 to 60°C.F^(-) doping with high electronegativity into the cathode surface is found to enhance the stability of surface lattice structure and protect the interface from side reactions with the electrolyte by generating a LiF-rich surface layer.Concurrently,the Mo^(6+) doping suppresses phase transition,which blocks Li^(+)/Ni^(2+) mixing,and stabilizes lithium-ion diffusion pathway.Remarkably,the FMNCM cathode demonstrates excellent cycling stability at a high cutoff voltage of 4.4 V,even at 60°C,maintaining 90.6%capacity retention at 3 C after 150 cycles.Additionally,at temperatures as low as-20°C,it retains 77.1%of its room temperature capacity,achieving an impressive 97.5%capacity retention after 500 cycles.Such stable operation under wide temperatures has been further validated in practical Ah-level pouch-cells.This study sheds light on both fundamental mechanisms and practical implications for the design of advanced cathode materials for wide-temperature LIBs,presenting a promising path towards high-energy and long-cycling LIBs with temperatureadaptability.
基金supported by the National Natural Science Foundation of China(22225604,22076082,22176140)the Frontiers Science Center for New Organic Matter(63181206)Haihe Laboratory of Sustainable Chemical Transformations。
文摘Photocatalytic water splitting using semiconductor photocatalysts is a promising approach for the production of carbon-neutral,sustainable and clean hydrogen fuel.However,the separation and transport of photoinduced carriers are generally considered to be rate-limiting steps,and their low efficiency remains a major challenge.Therefore,much effort has been devoted to developing new strategies in surface/interface engineering of photocatalysts to improve the dynamics of charge separation/transport.This feature article briefly summarizes recent advances in photocatalyst surface/interface engineering by our research group,which have been achieved through the design of various novel photocatalysts,including interfacial modulation,heterostructure construction,heteroatom doping,single atom and diatom sites.The article is divided into three parts:first,we briefly introduce the three key processes involved in solar water splitting and reveal relationships between the properties of nanostructural photocatalysts and the fundamentals of water splitting;second,we detail methods and strategies for surface and interfacial structures to improve the efficiency of the fundamental processes,especially charge separation;finally,we explore prospects for photocatalytic water splitting applications.This article provides a valuable resource and strategies for researchers currently working in the field of photocatalytic water splitting.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61076011 and 51177134)
文摘6H-SiC (1010) surface and Si (220)/6H-SIC (1010) interface with different stacking sites are investigated using first-principles calculations. Surface energies of 6H-SiC (1010) (case I, case II, and case III) are firstly studied and the surface calculation results show that case II and case III are more stable than case I. Then, the adhesion energies, fracture toughness values, interfacial energies, densities of states, and electronic structures of Si (220)/6H-SIC (1010) interfaces for three stacking models (AM, BM, and CM) are calculated. The CM model has the highest adhesion energy and the lowest interracial energy, suggesting that the CM is stronger and more thermodynamically stable than AM and BM. Densities of states and the total charge densities give evidence that interfacial bonding is formed at the interface and that Si-Si and Si-C are induced due to the hybridization of C-2p and Si-3p. Moreover, the Si-C is much stronger than Si-Si at the interface, implying that the contribution of the interfacial bonding mainly comes from Si-C rather than Si-Si.
基金Supported by the National Natural Science Foundation of China under Grant Nos 50806057 and 10972225, and the Key Laboratory of Mierogravity/CAS for experiments utilizing the drop tower Beijing.
文摘Nucleate pool boiling on micro-pin-finned surface structure is proposed for efficiently cooling electronic compo- nents with high heat flux in microgravity, and was verified by experiments performed utilizing the drop tower Beijing. Micro-pin-fins with tile dimensions of 50 × (30 μm2 (thickness × height) and the space of 50 μm were fabricated on the chip surface by the dry etching technique. FC-72 was used as the working fluid. Nucleate pool boiling of FC-72 on a smooth surface was also tested for comparison. Unlike much obvious deterioration of heat transfer of nucleate pool boiling on the smooth surface in microgravity, constant heater surface temperature of nucleate pool boiling for the micro-pin-finned surface was observed, even though a large coalesced bubble completely covered the surface under microgravity condition. The performance of high efficient heat transfer on micro-pin-finned surface is independent of the gravity, which stems from the sufficient supply of fresh liquid to the heater surface due to the capillary forces.
文摘This work deals with the influences of nano-heterogeneities in the form of voids/cavities or cracks on the elastic (please confirm which word is correct. effective or elastic? According to the title of paper, I choose elastic.) properties of a host medium. With a relatively large ratio of apparent-surface to volume and particularly strong physical interactions with the surrounding medium at nano-scale, nano-heterogeneities can potentially affect the elastic(effective or elastic?) properties of the parent medium (matrix) containing them in a significant manner. This has been reported by various theoretical and experimental studies, some of them are discussed in the present paper. To describe the positive (reinforcement) or negative (degradation) effect of the nano-heterogeneities from the modeling perspective, it is necessary to take into account the energy of interfaces/surfaces between nano-heterogeneities and the matrix which, by the fact of the relatively large extent of their apparent surface and their strong physical interaction with their neighborhood, can no longer be neglected compared to those of the volume energy. Thus, to account for the effects of interfaces/surfaces in a nanostructured heterogeneous medium, the coherent interface model is considered in the present investigation within a periodic homogenization procedure. In this interface/surface model, the displacement vector is assumed to be continuous across the interface while the stress vector is considered to be discontinuous and satisfying the Laplace-Young equations. To solve these equations coupled to the classical mechanical equilibrium problem, a numerical simulation tool is developed in a two-dimensional (2D) context using the eXtended Finite Element Method (XFEM) and the Level-Set functions. The developed numerical tool is then used to carry out a detailed analysis about the effect of nano-heterogeneities on the overall mechanical properties of a medium. The nano-heterogeneities are present in the medium initially as cylindrical cavities (circular in 2D) before being reduced to plane cracks (line in 2D) by successive flattenings.
基金in part supported by the Austrian Science Fund FWF through projects Com Cat(I 1041-N28)and DK+Solids4Fun(W1243)by TU Wien via the Innovative Project “SFG Spectroscopy”
文摘Sum frequency generation(SFG) vibrational spectroscopy has been proven an excellent tool to measure the molecular structures, symmetries and orientations at surfaces/interfaces because of its strong polarization dependence. However, a precise quantitative analysis of SFG spectral intensity and molecular orientation at interfaces must be carefully performed. In this work, we summarized the parameters and factors that are often ignored and illustrated them by evaluating studies of CO adsorption on the(111) facet of platinum(Pt) and palladium(Pd) single crystals at the gas(ultra-high vacuum, UHV)/solid interfaces and methanol(water) adsorption at the air/liquid(solid/liquid) interfaces in the presence of sodium iodide(chloride) salts. To intuitively estimate the influence of incidence angles and refractive indices on the SFG intensity, solely a defined factor of|Fyyz| was discussed, which can be individually separated from the macroscopic second-order non-linear susceptibility χ yyz^(2) term and represents the SSP intensity. Moreover, effects of refractive indices and the molecular hyperpolarizability ratio(R) were discussed in the orientational analysis of interfacial CO and methanol molecules. When IPPP/ISSP was identical, molecules with a larger R had smaller tilting angles(q) on Pt(assuming q < 51°), and CO molecules on Pd would tilt much closer to the surface than they did on Pt. A total internal reflection(TIR) geometry enhanced the SFG intensity, but it also amplified the influence of refractive index on SFG intensity at the solid(silica)/liquid interface. The refractive index and R-value had similar influence on the methanol orientation in the presence of sodium iodide salts at air/liquid and solid/liquid interfaces. This work should provide a guideline for analyzing the orientation of molecules with different R, which are adsorbed on catalysts or located at liquid interfaces involving changes of refractive indices.
文摘In order to restore the degraded ultrasonic C-scan image for testing surfacing inteoface, a method based on support vector regression (SVR) network is proposed. By using the image of a simulating defect, the network is trained and a mapping relationship between the degraded and restored image is founded. The degraded C-scan image of Cu-Steel surfacing inteoface is processed by the trained network and improved image is obtained. The result shows that the method can effectively suppress the noise and deblur the defect edge in the image, and provide technique support for quality and reliability evaluation of the surfacing weld.
基金supported by the National Natural Science Foundation of China(21801090,21831003 and 21621001)the Jilin Scientific and Technological Development Program(20200802003GH)+2 种基金the Scientific Research Project in the Education Department of Jilin Province(JJKH20211044KJ)the Project on Experimental Technique of Jilin University(409020720202)supported by Users with the Excellence Program of Hefei Science Center CAS(2020HSC-UE002)。
文摘The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we developed a spin-state and delocalized electron regulation method to optimize oxygen evolution reaction(OER)performance by in-situ growth of NiCo_(2)(OH)_(x) using Oswald ripening and coordinating etching process on MXene and plasma treatment.X-ray absorption spectroscopy,magnetic tests and electron paramagnetic resonance reveal that the coupling of NiCo_(2)(OH)_(x) and MXene can induce remarkable spin-state transition of Co^(3+)and transition metal ions electron delocalization,plasma treatment further optimizes the 3 d orbital structure and delocalized electron density.The unique Jahn-Teller phenomenon can be brought by the intermediate spin state(t2 _(g)^(5) e_(g)^(1))of Co^(3+),which benefits from the partial electron occupied egorbitals.This distinct electron configuration(t2_(g)^(5) e_(g)^(1))with unpaired electrons leads to orbital degeneracy,that the adsorption free energy of intermediate species and conductivity were further optimized.The optimized electrocatalyst exhibits excellent OER activity with an overpotential of 268 m V at 10 m A cm^(-2).DFT calculations show that plasma treatment can effectively regulate the d-band center of TMs to optimize the adsorption and improve the OER activity.This approach could guide the rational design and discovery of electrocatalysts with ideal electron configurations in the future.
基金supported by the Special Project of Shanghai Nano Technology (0852nm02400 and 0752nm012)Shaoxing Science and Technology Commission (2007A21015)+3 种基金Shanghai Rising-Star Program (07QA14026)the National Natural Science Foundation of China (10804072)the Key Fundamental Project of Shanghai (08JC1410400)Shanghai Education Commission (07zz143)
文摘Synchrotron radiation photoemission spectroscopy was used to study the formation process of Er2O3/Si(001) imerface and film during epitaxial growth on Si. A shift in the O core-level binding energy was found accompanied by a shift in the Er2O3 valence band maximum. This shift depended on the oxide layer thickness and interfacial structure. An interfacial layer was observed at the initial growth of Er2O3 film on Si, which was supposed to be attributed to the effect of Er atom catalytic oxidation effect.
基金Supported by the National Natural Science Foundation of China under Grant No 10702014, the New Century Excellent Talent Project of the Ministry of Education of China under Grant No NCET-10-0271, the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT), the Fundamental Research Funds for the Central Universities under Grant Nos N100503002 and N100703001, the Research Fund for the Doctoral Program of Higher Education under Grant No 20070145076.
文摘The elementary beam model is modified to include the surface effects and used to analyze the deflections of nanowires under different boundary conditions. Tile results show that compared to deflections of nanowires without consideration of surface effects, the surface effects can enlarge or reduce deflections of nanowires, and nanowire buckling occurs under certain conditions. This study might be helpful for design of nanowire-based nanoelectromechanical systems.