The adsorption kinetics of five heavy metals onto the natural surface coatings, which were collected in the Nanhu Lake in Changchun, Jilin Province, China, were investigated for the purpose of giving some explanations...The adsorption kinetics of five heavy metals onto the natural surface coatings, which were collected in the Nanhu Lake in Changchun, Jilin Province, China, were investigated for the purpose of giving some explanations for the mechanisms of heavy metal adsorption onto the surface coatings with initial metal ions of 5 μmol/L. The results show that firstly, the adsorption of heavy metals onto the surface coatings follows the first order kinetics; secondly, the double-constant rate equation is suitable to describing the adsorption of heavy metals selected onto the natural aquatic surface coatings, following the order K_ Cu>K_ Pb>K_ Co>K_ Ni>K_ Cd; thirdly, there is a significant correlation between the adsorption rate and the physical and chemical characteristics of heavy metals, such as E 0, Δ_fH 0_m, and Δ_fG 0_m based on the linear regression analysis.展开更多
The ^226Ra and ^228Ra activities of Qinghai Lake surface water, groundwater, river water, suspended particles, and bottom sediments were measured in a gamma-ray spectrometer. The sources of ^226Ra and ^228Ra were disc...The ^226Ra and ^228Ra activities of Qinghai Lake surface water, groundwater, river water, suspended particles, and bottom sediments were measured in a gamma-ray spectrometer. The sources of ^226Ra and ^228Ra were discussed according to their distribution characteristics. ^226Ra and ^228Ra activities (dpm/(100 L)) ranged from 14.13±0.22 to 19.22±0.42 and 17.724-0.66 to 30.96:kl.47 in the surface water of the North Bay, respectively, and from 7.88±0.24 to 33.80±0.47 and 15.73±0.74 to 57.31±1.44, respectively, in the South Bay. The surface water near the estuary had a lower salinity and had a higher concentration of radium isotopes than the samples collected further away. The farther offshore the sample, the higher the salinity was, and the lower the radium isotope activity. The distribution of radium activities in the western part of Qinghai Lake is controlled by several factors, including Buha River runoff, desorption from suspended particles derived from the river, groundwater discharge, and a small amount of diffusion from the sediment.展开更多
Phosphorus(P) losses from agricultural soils contribute to eutrophication of surface waters. This field plot study investigated effects of rainfall regimes and P applications on P loss by surface runoff from rice(O...Phosphorus(P) losses from agricultural soils contribute to eutrophication of surface waters. This field plot study investigated effects of rainfall regimes and P applications on P loss by surface runoff from rice(Oryza sativa L.) and wheat(Triticum aestivum L.) cropping systems in Lake Taihu region, China. The study was conducted on two types of paddy soils(Hydromorphic at Anzhen site, Wuxi City, and Degleyed at Xinzhuang site, Changshu City, Jiangsu Province) with different P status, and it covered 3 years with low, high and normal rainfall regimes. Four rates of mineral P fertilizer, i.e., no P(control), 30 kg P ha^(–1) for rice and 20 kg P ha^(–1) for wheat(P_(30+20)), 75 plus 40(P_(75+40)), and 150 plus 80(P_(150+80)), were applied as treatments. Runoff water from individual plots and runoff events was recorded and analyzed for total P and dissolved reactive P concentrations. Losses of total P and dissolved reactive P significantly increased with rainfall depth and P rates(P〈0.0001). Annual total P losses ranged from 0.36–0.92 kg ha^–1 in control to 1.13–4.67 kg ha^–1 in P150+80 at Anzhen, and correspondingly from 0.36–0.48 kg h^–1 to 1.26–1.88 kg ha^–1 at Xinzhuang, with 16–49% of total P as dissolved reactive P. In particular, large amounts of P were lost during heavy rainfall events that occurred shortly after P applications at Anzhen. On average of all P treatments, rice growing season constituted 37–86% of annual total P loss at Anzhen and 28–44% of that at Xinzhuang. In both crop seasons, P concentrations peaked in the first runoff events and decreased with time. During rice growing season, runoff P concentrations positively correlated(P〈0.0001) with P concentrations in field ponding water that was intentionally enclosed by construction of field bund. The relative high P loss during wheat growing season at Xinzhuang was due to high soil P status. In conclusion, P should be applied at rates balancing crop removal(20–30 kg P ha^–1 in this study) and at time excluding heavy rains. Moreover, irrigation and drainage water should be appropriately managed to reduce runoff P losses from rice-wheat cropping systems.展开更多
文摘The adsorption kinetics of five heavy metals onto the natural surface coatings, which were collected in the Nanhu Lake in Changchun, Jilin Province, China, were investigated for the purpose of giving some explanations for the mechanisms of heavy metal adsorption onto the surface coatings with initial metal ions of 5 μmol/L. The results show that firstly, the adsorption of heavy metals onto the surface coatings follows the first order kinetics; secondly, the double-constant rate equation is suitable to describing the adsorption of heavy metals selected onto the natural aquatic surface coatings, following the order K_ Cu>K_ Pb>K_ Co>K_ Ni>K_ Cd; thirdly, there is a significant correlation between the adsorption rate and the physical and chemical characteristics of heavy metals, such as E 0, Δ_fH 0_m, and Δ_fG 0_m based on the linear regression analysis.
基金Supported by the"One Hundred Plan"Project of Chinese Academy of Sciences:Groundwater Discharge and Geochemical Processes of Plateau Inland Lakes(No.Y210101028)the Tracer of Groundwater Discharge by Radioactive Isotope(No.Y360051010)
文摘The ^226Ra and ^228Ra activities of Qinghai Lake surface water, groundwater, river water, suspended particles, and bottom sediments were measured in a gamma-ray spectrometer. The sources of ^226Ra and ^228Ra were discussed according to their distribution characteristics. ^226Ra and ^228Ra activities (dpm/(100 L)) ranged from 14.13±0.22 to 19.22±0.42 and 17.724-0.66 to 30.96:kl.47 in the surface water of the North Bay, respectively, and from 7.88±0.24 to 33.80±0.47 and 15.73±0.74 to 57.31±1.44, respectively, in the South Bay. The surface water near the estuary had a lower salinity and had a higher concentration of radium isotopes than the samples collected further away. The farther offshore the sample, the higher the salinity was, and the lower the radium isotope activity. The distribution of radium activities in the western part of Qinghai Lake is controlled by several factors, including Buha River runoff, desorption from suspended particles derived from the river, groundwater discharge, and a small amount of diffusion from the sediment.
基金funded by the Special Fund for AgroScientific Research in the Public Interest, China (201003014)
文摘Phosphorus(P) losses from agricultural soils contribute to eutrophication of surface waters. This field plot study investigated effects of rainfall regimes and P applications on P loss by surface runoff from rice(Oryza sativa L.) and wheat(Triticum aestivum L.) cropping systems in Lake Taihu region, China. The study was conducted on two types of paddy soils(Hydromorphic at Anzhen site, Wuxi City, and Degleyed at Xinzhuang site, Changshu City, Jiangsu Province) with different P status, and it covered 3 years with low, high and normal rainfall regimes. Four rates of mineral P fertilizer, i.e., no P(control), 30 kg P ha^(–1) for rice and 20 kg P ha^(–1) for wheat(P_(30+20)), 75 plus 40(P_(75+40)), and 150 plus 80(P_(150+80)), were applied as treatments. Runoff water from individual plots and runoff events was recorded and analyzed for total P and dissolved reactive P concentrations. Losses of total P and dissolved reactive P significantly increased with rainfall depth and P rates(P〈0.0001). Annual total P losses ranged from 0.36–0.92 kg ha^–1 in control to 1.13–4.67 kg ha^–1 in P150+80 at Anzhen, and correspondingly from 0.36–0.48 kg h^–1 to 1.26–1.88 kg ha^–1 at Xinzhuang, with 16–49% of total P as dissolved reactive P. In particular, large amounts of P were lost during heavy rainfall events that occurred shortly after P applications at Anzhen. On average of all P treatments, rice growing season constituted 37–86% of annual total P loss at Anzhen and 28–44% of that at Xinzhuang. In both crop seasons, P concentrations peaked in the first runoff events and decreased with time. During rice growing season, runoff P concentrations positively correlated(P〈0.0001) with P concentrations in field ponding water that was intentionally enclosed by construction of field bund. The relative high P loss during wheat growing season at Xinzhuang was due to high soil P status. In conclusion, P should be applied at rates balancing crop removal(20–30 kg P ha^–1 in this study) and at time excluding heavy rains. Moreover, irrigation and drainage water should be appropriately managed to reduce runoff P losses from rice-wheat cropping systems.