A pipeline steel X80 with welded joint was subjected to surface mechanical attrition treatment (SMAT). After SMAT, a nanostructure surface layer with an average grain size of about 10 nm was formed in the treated sa...A pipeline steel X80 with welded joint was subjected to surface mechanical attrition treatment (SMAT). After SMAT, a nanostructure surface layer with an average grain size of about 10 nm was formed in the treated sample, and the fatigue limit of the welded joint was elevated by about 13% relative to the untreated joints. In the low and the high amplitude stress regimes, both fatigue strength and fatigue life were enhanced. Formation of the nanostructured surface layer played more important role in the enhanced fatigue behavior than that of residual stress induced by the SMAT.展开更多
Nano-structured layers are fabricated on the surface of 1.0C-1.5Cr steel by using the surface mechanical attrition treatment(SMAT)technology,and the microstructures of the surface nano-crystallization layers are chara...Nano-structured layers are fabricated on the surface of 1.0C-1.5Cr steel by using the surface mechanical attrition treatment(SMAT)technology,and the microstructures of the surface nano-crystallization layers are characterized by means of X-ray diffraction(XRD)and transmission electron microscopy(TEM).The friction and wear properties are also investigated by a UMT-2 friction and wear tester.Experimental research has indicated that the average diameter of nanocrystalline grains in the surface layer after being treated for 15 min is in the range of 10-20 nm,and ferrite and cementite grains can not be identified by their morphologies.The wear-resistance of the specimen treated for 15 min has been doubled,compared with that of the matrix due to the grain refinement to a nano-sized scale.The lowest friction coefficient is 0.27,which is for the specimen treated for 30 min,resulting from the dissolution of the cementite phase and the formation of a relative homogenous structure.The SMAT technique for enhancing the wear-resistance of the 1.0C-1.5Cr steel has an optimum processing time,which is in the range of 15-30 min.The dominant wear mechanism of the specimen treated for 15 min changes from adhesive wear into particle wear.展开更多
The nanocrystalline microstructure of the surface of 316 stainless steel (316SS) induced by surface mechanical attrition treatment (SMAT) was determined by X-ray diffraction (XRD) and scanning electron microsco...The nanocrystalline microstructure of the surface of 316 stainless steel (316SS) induced by surface mechanical attrition treatment (SMAT) was determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The technique of hydrogen embrittlement was first used to obtain the information of the brittleness cleavage plane. The effects of SMAT and the following annealing process on the corrosion behavior of 316SS were investiga- ted by potentiodynamic polarization curves and potentiostatic critical pitting temperature measurements. The results demonstrated that the nanoerystalline layer with an average grain size of 19 nm was produced. However, there were lots of cracks on the surface, which led to the degradation in the corrosion resistance of 316SS after SMAT. Never- theless, after annealing treatment, the corrosion resistance of the nanocrystalline surface had been improved greatly. The higher the annealing temperature, the better was the corrosion resistance.展开更多
A nanostructured surface layer has been fabricated on an AISI H13 tool steel by means of surface mechanical attrition treatment (SMAT).Strain-induced refinement processes of ferrite grains and carbide particles have...A nanostructured surface layer has been fabricated on an AISI H13 tool steel by means of surface mechanical attrition treatment (SMAT).Strain-induced refinement processes of ferrite grains and carbide particles have been investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) in the SMAT surface layer.Grain refinement of ferrite is found to be dominated by dislocation activities and greatly facilitated by a large number of carbide particles at a depth 〉20 μm.The comparisons with microstructure refinement processes in other SMAT ferrite steels indicate that a larger volume fraction of carbide particles with a lower shear strength is expected to facilitate the refinement process of ferrite grains.展开更多
A nanocrystalline layer (NL) was fabricated on the surface of AZ31 magnesium (Mg) alloy sheet by surface mechanical attrition treatment (SMAT). The microstructure of the Mg alloy was characterized by optical mic...A nanocrystalline layer (NL) was fabricated on the surface of AZ31 magnesium (Mg) alloy sheet by surface mechanical attrition treatment (SMAT). The microstructure of the Mg alloy was characterized by optical microscopy, X-ray diffraction and microhardness test. The results showed that both the microstructure and microhardness of AZ31 Mg alloy sheet after SMAT revealed a gradient distribution along depth from surface to center. The thermal stability of the NL was investigated through characterizing the microstructure evolution during the post-isothermal annealing treatment within the temperature range from 150 to 250℃. The NL exhibits a certain degree of thermal stability below 150 ℃, while it disappears quickly when annealing at the temperature range of 200-250 ℃. The grain growth kinetics of the nanocrystalline of AZ31 Mg alloy induced by SMAT was investigated. The activation energy of nanocrystalline AZ31 Mg alloy was obtained with a value of 92.8 kJ/mol.展开更多
Nanocrystalline surface layers and gradient nanostructure in 5182 aluminum alloy have been produced through surface mechanical attrition treatment(SMAT). The results indicate that the gradient nanostructure can not on...Nanocrystalline surface layers and gradient nanostructure in 5182 aluminum alloy have been produced through surface mechanical attrition treatment(SMAT). The results indicate that the gradient nanostructure can not only improve the mechanical properties of 5182 Al alloy, but also has a certain effect on the Portevin-Le Chatelier(PLC) effect. The yield and ultimate tensile strength of 5182 Al alloy with SMAT are significantly improved combining with the decrease of fracture elongation compared with the as-received one. The PLC effect of 5182 Al alloy could be effectively postponed by the formation of gradient nanostructure after SMAT. It leads to the increase of critical strain of the PLC effect, more concentrated distribution of serrated strain, and increase of average stress amplitude in special strain range. The influence of grain size and gradient nanostructure on the PLC effect of 5182 Al alloy was also discussed in detail. Grain refinement could sharply increase the density of dislocations and hinder the movement of dislocations, which results in the decrease of moving speed of dislocations and the more concentrated distribution of solute atoms. The solute atoms would aggregate to form nano precipitates and further impede movement of dislocation. The stronger interaction between the dislocations and the nano precipitates is the main mechanism of postponed PLC effect.展开更多
The effect of surface mechanical attrition treatment (SMAT) of commercially pure titanium (CP-Ti) using 8 mm O alumina balls was studied. SMAT induced plastic deformation, increased the surface roughness, reduced ...The effect of surface mechanical attrition treatment (SMAT) of commercially pure titanium (CP-Ti) using 8 mm O alumina balls was studied. SMAT induced plastic deformation, increased the surface roughness, reduced the grain size and decreased the contact angle (from 64° to 43°) with a corresponding increase in surface energy (from 32 to 53 mJ/m2). Untreated CP-Ti and those treateded using alumina bails for 900 s reveals no apatite growth until the 28th day of immersion whereas those treated for 1800 and 2700 s exhibit apatite growth In selective areas and the extent of growth is increased with increase in immersion time an SBF; The study reveals that SMAT using alumina balls is beneficial in imparting the desired surface Cheracteristics, provided the surface contamination is limited, which would otherwise decrease the apatite forming ability.展开更多
By surface mechanical attrition treatment(SMAT),a gradient nano structure(GNS) from the surface to center was generated in the AZ31 alloy sheet.The tribological behavior of AZ31 alloy with GNS was systematically i...By surface mechanical attrition treatment(SMAT),a gradient nano structure(GNS) from the surface to center was generated in the AZ31 alloy sheet.The tribological behavior of AZ31 alloy with GNS was systematically investigated by using dry sliding tests,a 3D surface profile-meter and a scanning electron microscope equipped with an energy-dispersive spectrometer.The experimental results indicate that the Mg alloy with GNS exhibits better wear resistance comparing to the as-received sample,which is associated to the alteration of wear mechanism at different sliding speeds.The Mg alloy with GNS presents the wear mechanism of the abrasive wear at 0.05 m/s and the oxidative wear at 0.5 m/s,respectively.Moreover,the GNS can effectively promote the reaction between the oxygen and worn surface,which leads to a compact oxidation layer at 0.5 m/s.The effect of oxidation layer on the wear resistance of the Mg alloy was also discussed.展开更多
The serrated plastic flow,microstructure and residual stress of a Zr_(55)Cu_(30)Ni_5Al_(10) bulk metallic glass(BMG)undergone surface mechanical attrition treatment(SMAT)have been investigated by a combinati...The serrated plastic flow,microstructure and residual stress of a Zr_(55)Cu_(30)Ni_5Al_(10) bulk metallic glass(BMG)undergone surface mechanical attrition treatment(SMAT)have been investigated by a combination of compression tests with scanning electron microscopy(SEM),high resolution transmission electron microscopy(HRTEM)and the incremental hole-drilling strain-gage method.It is found that SMAT leads to various microstructural modifications and residual stress distribution in the surface layers of the Zrbased BMG due to the mechanically-induced nanocrystallization and generation of shear bands.As a result,the BMG alloy exhibits a remarkable work-hardening like behavior and significant increase of plastic strain from less than 1%to 15%,and its plastic deformation dynamics yields a power-law distribution of shear avalanches.Based upon the analysis of the experimental results,it is indicated that this can be connected to the SMAT-induced microstructural modifications and the resulting residual compressive stress in the Zr-based BMG.展开更多
In order to lower the boriding temperature of hot work steel H13, method of surface mechanical attrition treatment (SMAT), which can make the grain size of the surface reach nano-scale, was used before pack boriding...In order to lower the boriding temperature of hot work steel H13, method of surface mechanical attrition treatment (SMAT), which can make the grain size of the surface reach nano-scale, was used before pack boriding. The growth of the boride layer was studied in a function of boriding temperature and time. By TEM (transmission electron microscopy), SEM (scanning electron microscopy), XRD (x-ray diffraction) and microhardness tests, the grain size, thermal stability of the nano-structured (NS) surface and the thickness,appearance, phases of the surface boride layer were studied. Kinetic of boriding was compared between untreated samples and treated samples. Results showed that after SMAT, the boride layer was thicker and the hardness gradient was smoother. Furthermore, after boriding at a low temperature of 700℃ for 8 h, a boride layer of about 5 μm formed on the NS surface. This layer was toothlike and wedged into the substrate, which made the surface layer combine well with the substrate. The phase of the boride layer was Fe2B. Research on boriding kinetics indicated that the activation energy was decreased for the treated samples.展开更多
An ultrafine grained microstructure was obtained for 304 stainless steel(304SS)sheets by using surface nanocrystallization and warm-rolling.The microstructure and mechanical properties were determined by X-ray diffrac...An ultrafine grained microstructure was obtained for 304 stainless steel(304SS)sheets by using surface nanocrystallization and warm-rolling.The microstructure and mechanical properties were determined by X-ray diffraction(XRD),transmission electron microscope(TEM)and a test on microhardness.Experimental results were shown that the microstructure was featured by a continuous distribution from the nanocrystalline on the surface to micro-grains in the center,in which the volume fraction of the micro-sized grains is about 40% in the surface layer.This multi-scale grained microstructure was composed of austenite and martensite phases with a gradient increasing volume fraction of austenite from the surface to the centre.The microhardness of the resultant steel was higher than 150% of that as received,due to the refined grains and strain-induced martensitic transformation.The hardness distribution was consistent with the microstructural variation,suggesting a good combination of high strength and improved ductility.展开更多
This study reports the significantly enhanced aluminizing behaviors of a low carbon steel at temperatures far below the austenitizing temperature, with a nanostructured surface layer produced by surface mechanical att...This study reports the significantly enhanced aluminizing behaviors of a low carbon steel at temperatures far below the austenitizing temperature, with a nanostructured surface layer produced by surface mechanical attrition treatment (SMAT). A much thicker iron aluminide compound layer with a much enhanced growth kinetics of η-Fe2Al5 in the SMAT sample has been observed relative to the coarse-grained steel sample. Compared to the coarse-grained sample, a weakened texture is formed in the aluminide layer in the SMAT sample. The aluminizing kinetics is analyzed in terms of promoted difusivity and nucleation frequency in the nanostructured surface layer.展开更多
By means of surface mechanical attrition treatment ( SMAT), the groin size with a diameter of aboat 60hm formed at about 20μm depth and numerous mechanical twins at about 50μm depth from the treated surface were ...By means of surface mechanical attrition treatment ( SMAT), the groin size with a diameter of aboat 60hm formed at about 20μm depth and numerous mechanical twins at about 50μm depth from the treated surface were synthesized in 316L stainless steel because of the different distributions of strain and strain rate along depth orientation. For instance the maximum strain rate reached 10^3-10^4s^-1 on the top surface. The relationship between the microsturcture and the corrosion property was studied in 0.05M H2SO4+ 0.25M Na2SO4 aqueous solution, and the results show an extreme improvement of corrosion resistance owing to the appearance of twin boundaries and the obvious reduction in corrosion resistance attributed to the presence of nanocrystaline boundaries.展开更多
Surface mechanical attrition treatment (SMAT) was developed to synthesize nanostructure coatings on alloy surface. The SMAT action was applied in the process of Ni and Cu electroplating coatings on NdFeB substrates ...Surface mechanical attrition treatment (SMAT) was developed to synthesize nanostructure coatings on alloy surface. The SMAT action was applied in the process of Ni and Cu electroplating coatings on NdFeB substrates in this paper. The role of mechanical attrition during barrel plating on the microstructure, mechanical and corrosion resistant properties of the coatings was exam- ined. The scanning electron microscopy (SEM) observation showed that the mechanical attrition could refine grain size, markedly smooth the coating surface and obviously decrease the number of pore in the coatings. The continuous collisions of glass balls onto the NdFeB samples could induce more beneficial nucleation defects on the coating, which was helpful for increasing nucleation sites and the nucleation rate. The mechanical attrition could also restrain the heterogeneous growth of the coating grain tips due to the abra- sive action of stainless steel balls. The Tafel polarization curve experimental results indicated that SMAT process could enhance the corrosion resistance of coatings on NdFeB. The scratching test revealed that the binding force between coating and NdFeB substrate could be improved dramatically with SMAT process.展开更多
High density nano-scale deformation twins were introduced in the surface layer of Cu sample by means of surface mechanical attrition treatment (SMAT) at room temperature. The Cu sample with deformation twins shows a...High density nano-scale deformation twins were introduced in the surface layer of Cu sample by means of surface mechanical attrition treatment (SMAT) at room temperature. The Cu sample with deformation twins shows a yield strength of about 470 MPa in tension tests. The significant strengthening may be attributed to the effective inhibition of slip dislocations by abundant twin boundaries.展开更多
This talk will summarize the recent work related to a kind of new nanomaterials produced by the SMAT (surface mechanical attrition treatment).The concept of surface nanocrystallization of materials will be presented.I...This talk will summarize the recent work related to a kind of new nanomaterials produced by the SMAT (surface mechanical attrition treatment).The concept of surface nanocrystallization of materials will be presented.In terms of the grain refinement mechanism induced by plastic deformation,a novel surface mechanical attrition(SMA) technique was developed for synthesizing a nanostructured surface layer on metallic materials in order to upgrade the overall properties and performance.The grain refinement mechanism of the surface layer during the SMA treatment will be analyzed in terms of the nanostructure observations in several typical materials.Very high yield stress(5 times of the base material) on the surface layer of the material obtained by the SMAT has been observed.The effect of surface nanostructures on the mechanical behavior and on the failure mechanism of metallic material shows the possibility to develop a new strength gradient composite using co-rolling and nitriding.The role of residual stress induced during the treatment will be investigated and discussed.The developed materials are also porosity free materials which can be used as reference material for the local mechanical behavior investigation technique such as the nanoindentation.A general concept for obtaining high strength and high ductility nanostructured materials will be presented.The exceptional high strength and high ductility steels have developed.The simulation of the mechanisms for improving ductility of high strength nanostructured materials will be presented.The potential applications for the land transportation vehicles(car,bus,train) and wind energy have been investigated.Some examples of concept design for the integration of the advanced nanostructured steels will be presented.展开更多
An aluminide(AlFe and α-(FeAl)) surface layer containing lower-Al was formed on ferritic-martensitic steel P92 by means of surface mechanical attrition treatment(SMAT) combined with a duplex aluminization proce...An aluminide(AlFe and α-(FeAl)) surface layer containing lower-Al was formed on ferritic-martensitic steel P92 by means of surface mechanical attrition treatment(SMAT) combined with a duplex aluminization process at lower temperatures,i.e.a packed aluminization followed by a diffusion annealing treatment below its tempering temperature.Indentation tests indicated that the lower-Al surface layer formed on the SMAT sample is more resistant to cracking and has better adhesion to the substrate in comparison with the Al 5Fe 2 layer formed on the as-received sample after the duplex aluminization process.Isothermal steam oxidation measurements showed that the oxidation resistance is increased significantly by the lower-Al surface layer due to the formation of a protective(Fe,Cr)Al 2O 4 layer.The rate constant of oxidation was estimated to decrease from-0.849 mg^2 cm^-4h^-1 of the as-received material to^0.011 mg^2 cm^-4 h^-1 of the AlFe layer at 700 ℃.展开更多
In this study,surface mechanical attrition treatment was employed to sucessfully produce a gradient nanostructured layer on WE43 magnesium alloy.X-ray diffraction,energy dispersive X-ray spectrometer,and high-resoluti...In this study,surface mechanical attrition treatment was employed to sucessfully produce a gradient nanostructured layer on WE43 magnesium alloy.X-ray diffraction,energy dispersive X-ray spectrometer,and high-resolution transmission electron microscope observations were mainly performed to uncover the microstructure evolution responsible for the refinement mechanisms.It reveals that the grain refinement process consists of three transition stages along the depth direction from the core matrix to the topmost surface layer,i.e.,dislocation cells and pile-ups,ultrafine subgrains,and randomly orientated nanograins with the grain size of~40 nm.Noticeably,the original Mg;RE second phase is also experienced refinement and then re-dissolved into the α-Mg matrix phase,forming a supersaturated solid solution nanostructuredα-Mg phase in the gradient refined layer.Due to the cooperative effects of grain refinement hardening,dislocation hardening,and supersaturated solid-solution hardening,the gradient nanostructured WE43 alloy contributes to the ultimate tensile strength of~435 MPa and ductility of~11.0%,showing an extraordinary strain hardening and mechanical properties among the reported severe plastic deformation-processed Mg alloys.This work provides a new strategy for the optimization of mechanical properties of Mg alloys via combining the gradient structure and supersaturated solid solution.展开更多
Surface mechanical attrition treatment(SMAT) has been recently applied to bulk polycrystalline magnesium(Mg) alloys with gradient grain size distribution from the impact surface to inside matrix, hence effectively...Surface mechanical attrition treatment(SMAT) has been recently applied to bulk polycrystalline magnesium(Mg) alloys with gradient grain size distribution from the impact surface to inside matrix, hence effectively improving the alloys' mechanical performances. However, in-depth understanding of their mechanical property enhancement and grain size-dependent fracture mechanism remains unclear. Here,we demonstrated the use of in situ micro-tensile testing inside a high resolution scanning electron microscope(SEM) to characterize the microstructure evolution, in real time, of SMATed Mg alloy AZ31 samples with different grain sizes of ~10 μm('coarse-grain sample') and ~5 μm('fine-grain sample'), respectively, and compared the results with those of a raw Mg alloy AZ31. The quantitative tensile tests with in situ SEM imaging clearly showed that fracture of ‘fine-grain sample' was dominated by intergranular cracks,while both trans-granular and intergranular cracks led to the final failure of the ‘coarse-grain samples'.It is expected that this in situ SEM characterization technique, coupled with quantitative tensile testing method, could be applicable for studying other grain-refined metals/alloys, allowing to optimize their mechanical performances by controlling the grain sizes and their gradient distribution.展开更多
In order to increase the depth or concentration of Ti ion implantation of pure iron, the surface mechanical attrition treatment(SMAT), which can fabricate a nanometer-grained surface layer without porosity and contami...In order to increase the depth or concentration of Ti ion implantation of pure iron, the surface mechanical attrition treatment(SMAT), which can fabricate a nanometer-grained surface layer without porosity and contamination in a pure iron plate, was used before ion implantation. Ti ion was implanted into the SMA treated sample and coarse-grained counterpart by using a metal vapor vacuum arc source implanter. The changing of depth and concentration of Ti was studied in a function of implantation time.By optical microscopy, transmission electron microscopy and X-ray diffraction, the grain size of the nano structured surface was studied. Micro-hardness, friction and wear behavior of nano surface layers were studied. By energy dispersive X-ray spectroscopy and Auger electron spectroscopy, the chemical composition and concentration of Ti ion in the surface implantation layer were studied. Experimental results showed that the concentration of Ti increased dramatically compared with untreated coarsegrained samples, which is attributed to the existence of higher density of defects(supersaturated vacancies, dislocations, non-equilibrium grain boundaries etc.) and compression stress field in the SMA treated nanocrystallined surface layer. The interaction between the defects and the implanted solute atoms leads to the increment of solid solubility. But the implantation depth showed inconspicuous change. It is shown that the ion range is just relevant to the energy and mass of the ion, dose of injection,the mass and density of target material.展开更多
基金supported by the CNPC (China National Petroleum Corporation) Innovation Foundation under grant No.07E1015
文摘A pipeline steel X80 with welded joint was subjected to surface mechanical attrition treatment (SMAT). After SMAT, a nanostructure surface layer with an average grain size of about 10 nm was formed in the treated sample, and the fatigue limit of the welded joint was elevated by about 13% relative to the untreated joints. In the low and the high amplitude stress regimes, both fatigue strength and fatigue life were enhanced. Formation of the nanostructured surface layer played more important role in the enhanced fatigue behavior than that of residual stress induced by the SMAT.
基金supported by the National High-Tech.R&D Program of China(the National 863 plans projects,Grant No.2007AA03Z352)
文摘Nano-structured layers are fabricated on the surface of 1.0C-1.5Cr steel by using the surface mechanical attrition treatment(SMAT)technology,and the microstructures of the surface nano-crystallization layers are characterized by means of X-ray diffraction(XRD)and transmission electron microscopy(TEM).The friction and wear properties are also investigated by a UMT-2 friction and wear tester.Experimental research has indicated that the average diameter of nanocrystalline grains in the surface layer after being treated for 15 min is in the range of 10-20 nm,and ferrite and cementite grains can not be identified by their morphologies.The wear-resistance of the specimen treated for 15 min has been doubled,compared with that of the matrix due to the grain refinement to a nano-sized scale.The lowest friction coefficient is 0.27,which is for the specimen treated for 30 min,resulting from the dissolution of the cementite phase and the formation of a relative homogenous structure.The SMAT technique for enhancing the wear-resistance of the 1.0C-1.5Cr steel has an optimum processing time,which is in the range of 15-30 min.The dominant wear mechanism of the specimen treated for 15 min changes from adhesive wear into particle wear.
基金Item Sponsored by National Natural Science Foundation of China (50571027)
文摘The nanocrystalline microstructure of the surface of 316 stainless steel (316SS) induced by surface mechanical attrition treatment (SMAT) was determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The technique of hydrogen embrittlement was first used to obtain the information of the brittleness cleavage plane. The effects of SMAT and the following annealing process on the corrosion behavior of 316SS were investiga- ted by potentiodynamic polarization curves and potentiostatic critical pitting temperature measurements. The results demonstrated that the nanoerystalline layer with an average grain size of 19 nm was produced. However, there were lots of cracks on the surface, which led to the degradation in the corrosion resistance of 316SS after SMAT. Never- theless, after annealing treatment, the corrosion resistance of the nanocrystalline surface had been improved greatly. The higher the annealing temperature, the better was the corrosion resistance.
基金supported by the National Natural Science Foundation of China (Nos. 50621091,50701044and 50890171)the Ministry of Science and Technology(No. 2005CB623604)the National High Technology Research and Development Program of China (No.2007AA03Z352)
文摘A nanostructured surface layer has been fabricated on an AISI H13 tool steel by means of surface mechanical attrition treatment (SMAT).Strain-induced refinement processes of ferrite grains and carbide particles have been investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) in the SMAT surface layer.Grain refinement of ferrite is found to be dominated by dislocation activities and greatly facilitated by a large number of carbide particles at a depth 〉20 μm.The comparisons with microstructure refinement processes in other SMAT ferrite steels indicate that a larger volume fraction of carbide particles with a lower shear strength is expected to facilitate the refinement process of ferrite grains.
基金provided by the Grant 2012CB932203 of the National Key Basic Research Program of the Chinese Ministry of Science and Technology and Technologythe Croucher Foundation (No. 9500006)+4 种基金Hong Kong Collaborative Research Fund (CRF) Scheme (No. C402814G)the National Natural Science Foundation of China (No. 51464034)the Hong Kong Scholars Program (No. XJ2012025)the China Postdoctoral Science Foundation funded project (Nos. 2012T50594, 2014M551866)the Jiangxi Postdoctoral Science Foundation (No. 2014KY11)
文摘A nanocrystalline layer (NL) was fabricated on the surface of AZ31 magnesium (Mg) alloy sheet by surface mechanical attrition treatment (SMAT). The microstructure of the Mg alloy was characterized by optical microscopy, X-ray diffraction and microhardness test. The results showed that both the microstructure and microhardness of AZ31 Mg alloy sheet after SMAT revealed a gradient distribution along depth from surface to center. The thermal stability of the NL was investigated through characterizing the microstructure evolution during the post-isothermal annealing treatment within the temperature range from 150 to 250℃. The NL exhibits a certain degree of thermal stability below 150 ℃, while it disappears quickly when annealing at the temperature range of 200-250 ℃. The grain growth kinetics of the nanocrystalline of AZ31 Mg alloy induced by SMAT was investigated. The activation energy of nanocrystalline AZ31 Mg alloy was obtained with a value of 92.8 kJ/mol.
基金financially supported by the National Key Research and Development Plan(No.2017YFB1103700)the Natural Science Foundation of China(Nos.51671101 and51464034)+1 种基金the Natural Science foundation of Jiangxi Province(Nos.20172BCB22002,20171BCD40003,20161ACB21003,20162BCB23013)the Science and Technology Key Research Plan in Jiangxi Educational Department(No.GJJ150010)
文摘Nanocrystalline surface layers and gradient nanostructure in 5182 aluminum alloy have been produced through surface mechanical attrition treatment(SMAT). The results indicate that the gradient nanostructure can not only improve the mechanical properties of 5182 Al alloy, but also has a certain effect on the Portevin-Le Chatelier(PLC) effect. The yield and ultimate tensile strength of 5182 Al alloy with SMAT are significantly improved combining with the decrease of fracture elongation compared with the as-received one. The PLC effect of 5182 Al alloy could be effectively postponed by the formation of gradient nanostructure after SMAT. It leads to the increase of critical strain of the PLC effect, more concentrated distribution of serrated strain, and increase of average stress amplitude in special strain range. The influence of grain size and gradient nanostructure on the PLC effect of 5182 Al alloy was also discussed in detail. Grain refinement could sharply increase the density of dislocations and hinder the movement of dislocations, which results in the decrease of moving speed of dislocations and the more concentrated distribution of solute atoms. The solute atoms would aggregate to form nano precipitates and further impede movement of dislocation. The stronger interaction between the dislocations and the nano precipitates is the main mechanism of postponed PLC effect.
文摘The effect of surface mechanical attrition treatment (SMAT) of commercially pure titanium (CP-Ti) using 8 mm O alumina balls was studied. SMAT induced plastic deformation, increased the surface roughness, reduced the grain size and decreased the contact angle (from 64° to 43°) with a corresponding increase in surface energy (from 32 to 53 mJ/m2). Untreated CP-Ti and those treateded using alumina bails for 900 s reveals no apatite growth until the 28th day of immersion whereas those treated for 1800 and 2700 s exhibit apatite growth In selective areas and the extent of growth is increased with increase in immersion time an SBF; The study reveals that SMAT using alumina balls is beneficial in imparting the desired surface Cheracteristics, provided the surface contamination is limited, which would otherwise decrease the apatite forming ability.
基金National Key Research and Development Program(No.2016YFB0701201)National Natural Science Foundation of China(Nos.51671101,51464034)+3 种基金Natural Science foundation of Jiangxi Province(No.20161ACB21003)the Scientific Research Foundation of the Education Department of Jiangxi Province(No.GJJ150010)the financial support provided by the Croucher Foundation(No.9500006)Hong Kong Collaborative Research Fund(CRF)Scheme(No.C4028-14G)
文摘By surface mechanical attrition treatment(SMAT),a gradient nano structure(GNS) from the surface to center was generated in the AZ31 alloy sheet.The tribological behavior of AZ31 alloy with GNS was systematically investigated by using dry sliding tests,a 3D surface profile-meter and a scanning electron microscope equipped with an energy-dispersive spectrometer.The experimental results indicate that the Mg alloy with GNS exhibits better wear resistance comparing to the as-received sample,which is associated to the alteration of wear mechanism at different sliding speeds.The Mg alloy with GNS presents the wear mechanism of the abrasive wear at 0.05 m/s and the oxidative wear at 0.5 m/s,respectively.Moreover,the GNS can effectively promote the reaction between the oxygen and worn surface,which leads to a compact oxidation layer at 0.5 m/s.The effect of oxidation layer on the wear resistance of the Mg alloy was also discussed.
基金the financial supports provided by National Natural Science Foundation of China(Grant Nos.51171099,50871063)the MOST 973 Program of China(Grant Nos.2015CB856800 and 2012CB932203)
文摘The serrated plastic flow,microstructure and residual stress of a Zr_(55)Cu_(30)Ni_5Al_(10) bulk metallic glass(BMG)undergone surface mechanical attrition treatment(SMAT)have been investigated by a combination of compression tests with scanning electron microscopy(SEM),high resolution transmission electron microscopy(HRTEM)and the incremental hole-drilling strain-gage method.It is found that SMAT leads to various microstructural modifications and residual stress distribution in the surface layers of the Zrbased BMG due to the mechanically-induced nanocrystallization and generation of shear bands.As a result,the BMG alloy exhibits a remarkable work-hardening like behavior and significant increase of plastic strain from less than 1%to 15%,and its plastic deformation dynamics yields a power-law distribution of shear avalanches.Based upon the analysis of the experimental results,it is indicated that this can be connected to the SMAT-induced microstructural modifications and the resulting residual compressive stress in the Zr-based BMG.
文摘In order to lower the boriding temperature of hot work steel H13, method of surface mechanical attrition treatment (SMAT), which can make the grain size of the surface reach nano-scale, was used before pack boriding. The growth of the boride layer was studied in a function of boriding temperature and time. By TEM (transmission electron microscopy), SEM (scanning electron microscopy), XRD (x-ray diffraction) and microhardness tests, the grain size, thermal stability of the nano-structured (NS) surface and the thickness,appearance, phases of the surface boride layer were studied. Kinetic of boriding was compared between untreated samples and treated samples. Results showed that after SMAT, the boride layer was thicker and the hardness gradient was smoother. Furthermore, after boriding at a low temperature of 700℃ for 8 h, a boride layer of about 5 μm formed on the NS surface. This layer was toothlike and wedged into the substrate, which made the surface layer combine well with the substrate. The phase of the boride layer was Fe2B. Research on boriding kinetics indicated that the activation energy was decreased for the treated samples.
基金supported by the National High-Tech.R&D Programo f China(the National 863 plans projects,Grant No.2007AA03Z352)
文摘An ultrafine grained microstructure was obtained for 304 stainless steel(304SS)sheets by using surface nanocrystallization and warm-rolling.The microstructure and mechanical properties were determined by X-ray diffraction(XRD),transmission electron microscope(TEM)and a test on microhardness.Experimental results were shown that the microstructure was featured by a continuous distribution from the nanocrystalline on the surface to micro-grains in the center,in which the volume fraction of the micro-sized grains is about 40% in the surface layer.This multi-scale grained microstructure was composed of austenite and martensite phases with a gradient increasing volume fraction of austenite from the surface to the centre.The microhardness of the resultant steel was higher than 150% of that as received,due to the refined grains and strain-induced martensitic transformation.The hardness distribution was consistent with the microstructural variation,suggesting a good combination of high strength and improved ductility.
基金supported by the National Science Foundation of China (Nos.50701044 and 50890171)the Ministry of Science and Technology of China (No.2005CB623604)
文摘This study reports the significantly enhanced aluminizing behaviors of a low carbon steel at temperatures far below the austenitizing temperature, with a nanostructured surface layer produced by surface mechanical attrition treatment (SMAT). A much thicker iron aluminide compound layer with a much enhanced growth kinetics of η-Fe2Al5 in the SMAT sample has been observed relative to the coarse-grained steel sample. Compared to the coarse-grained sample, a weakened texture is formed in the aluminide layer in the SMAT sample. The aluminizing kinetics is analyzed in terms of promoted difusivity and nucleation frequency in the nanostructured surface layer.
文摘By means of surface mechanical attrition treatment ( SMAT), the groin size with a diameter of aboat 60hm formed at about 20μm depth and numerous mechanical twins at about 50μm depth from the treated surface were synthesized in 316L stainless steel because of the different distributions of strain and strain rate along depth orientation. For instance the maximum strain rate reached 10^3-10^4s^-1 on the top surface. The relationship between the microsturcture and the corrosion property was studied in 0.05M H2SO4+ 0.25M Na2SO4 aqueous solution, and the results show an extreme improvement of corrosion resistance owing to the appearance of twin boundaries and the obvious reduction in corrosion resistance attributed to the presence of nanocrystaline boundaries.
基金Project support from Guangxi Science Research and Technology Development Program(Gui Ke Gong 1348008-1)
文摘Surface mechanical attrition treatment (SMAT) was developed to synthesize nanostructure coatings on alloy surface. The SMAT action was applied in the process of Ni and Cu electroplating coatings on NdFeB substrates in this paper. The role of mechanical attrition during barrel plating on the microstructure, mechanical and corrosion resistant properties of the coatings was exam- ined. The scanning electron microscopy (SEM) observation showed that the mechanical attrition could refine grain size, markedly smooth the coating surface and obviously decrease the number of pore in the coatings. The continuous collisions of glass balls onto the NdFeB samples could induce more beneficial nucleation defects on the coating, which was helpful for increasing nucleation sites and the nucleation rate. The mechanical attrition could also restrain the heterogeneous growth of the coating grain tips due to the abra- sive action of stainless steel balls. The Tafel polarization curve experimental results indicated that SMAT process could enhance the corrosion resistance of coatings on NdFeB. The scratching test revealed that the binding force between coating and NdFeB substrate could be improved dramatically with SMAT process.
基金This work was supported by the National Natural Science Foundation of China under grant No.50021101,50431010,50571096M0ST of China(Grant No.2005CB623604).
文摘High density nano-scale deformation twins were introduced in the surface layer of Cu sample by means of surface mechanical attrition treatment (SMAT) at room temperature. The Cu sample with deformation twins shows a yield strength of about 470 MPa in tension tests. The significant strengthening may be attributed to the effective inhibition of slip dislocations by abundant twin boundaries.
文摘This talk will summarize the recent work related to a kind of new nanomaterials produced by the SMAT (surface mechanical attrition treatment).The concept of surface nanocrystallization of materials will be presented.In terms of the grain refinement mechanism induced by plastic deformation,a novel surface mechanical attrition(SMA) technique was developed for synthesizing a nanostructured surface layer on metallic materials in order to upgrade the overall properties and performance.The grain refinement mechanism of the surface layer during the SMA treatment will be analyzed in terms of the nanostructure observations in several typical materials.Very high yield stress(5 times of the base material) on the surface layer of the material obtained by the SMAT has been observed.The effect of surface nanostructures on the mechanical behavior and on the failure mechanism of metallic material shows the possibility to develop a new strength gradient composite using co-rolling and nitriding.The role of residual stress induced during the treatment will be investigated and discussed.The developed materials are also porosity free materials which can be used as reference material for the local mechanical behavior investigation technique such as the nanoindentation.A general concept for obtaining high strength and high ductility nanostructured materials will be presented.The exceptional high strength and high ductility steels have developed.The simulation of the mechanisms for improving ductility of high strength nanostructured materials will be presented.The potential applications for the land transportation vehicles(car,bus,train) and wind energy have been investigated.Some examples of concept design for the integration of the advanced nanostructured steels will be presented.
基金Financial supports from the Ministry of Science and Technology of the People’s Republic of China (No.2012CB932201)the National Natural Science Foundation of China (No.91226204)the Key Research Program of Chinese Academy of Sciences (No.KGZD-EW-T06)
文摘An aluminide(AlFe and α-(FeAl)) surface layer containing lower-Al was formed on ferritic-martensitic steel P92 by means of surface mechanical attrition treatment(SMAT) combined with a duplex aluminization process at lower temperatures,i.e.a packed aluminization followed by a diffusion annealing treatment below its tempering temperature.Indentation tests indicated that the lower-Al surface layer formed on the SMAT sample is more resistant to cracking and has better adhesion to the substrate in comparison with the Al 5Fe 2 layer formed on the as-received sample after the duplex aluminization process.Isothermal steam oxidation measurements showed that the oxidation resistance is increased significantly by the lower-Al surface layer due to the formation of a protective(Fe,Cr)Al 2O 4 layer.The rate constant of oxidation was estimated to decrease from-0.849 mg^2 cm^-4h^-1 of the as-received material to^0.011 mg^2 cm^-4 h^-1 of the AlFe layer at 700 ℃.
基金supported by National Natural Science Foundation of China(Nos.51701171 and 51971187)China Postdoctoral Science Foundation(No.2019M653599)+1 种基金the financial support from Partner State Key Laboratories in Hong Kong from the Innovation and Technology Commission(ITC)of the Government of the Hong Kong Special Administration Region(HKASR),China and the PolyU Research Office(Project Code:1-BBXA)supported by the grant from the PolyU Research Committee under student account code RK25
文摘In this study,surface mechanical attrition treatment was employed to sucessfully produce a gradient nanostructured layer on WE43 magnesium alloy.X-ray diffraction,energy dispersive X-ray spectrometer,and high-resolution transmission electron microscope observations were mainly performed to uncover the microstructure evolution responsible for the refinement mechanisms.It reveals that the grain refinement process consists of three transition stages along the depth direction from the core matrix to the topmost surface layer,i.e.,dislocation cells and pile-ups,ultrafine subgrains,and randomly orientated nanograins with the grain size of~40 nm.Noticeably,the original Mg;RE second phase is also experienced refinement and then re-dissolved into the α-Mg matrix phase,forming a supersaturated solid solution nanostructuredα-Mg phase in the gradient refined layer.Due to the cooperative effects of grain refinement hardening,dislocation hardening,and supersaturated solid-solution hardening,the gradient nanostructured WE43 alloy contributes to the ultimate tensile strength of~435 MPa and ductility of~11.0%,showing an extraordinary strain hardening and mechanical properties among the reported severe plastic deformation-processed Mg alloys.This work provides a new strategy for the optimization of mechanical properties of Mg alloys via combining the gradient structure and supersaturated solid solution.
基金supported by the National Key Basic Research Program (Grant No. 2012CB932203)the National Natural Science Foundation of China (Grant No. 51301147)+1 种基金the funding support from City University of Hong Kong (Grant Nos. 9610288 and 9680108)the funding support from the National Natural Science Foundation of China (Grant No. 51464234)
文摘Surface mechanical attrition treatment(SMAT) has been recently applied to bulk polycrystalline magnesium(Mg) alloys with gradient grain size distribution from the impact surface to inside matrix, hence effectively improving the alloys' mechanical performances. However, in-depth understanding of their mechanical property enhancement and grain size-dependent fracture mechanism remains unclear. Here,we demonstrated the use of in situ micro-tensile testing inside a high resolution scanning electron microscope(SEM) to characterize the microstructure evolution, in real time, of SMATed Mg alloy AZ31 samples with different grain sizes of ~10 μm('coarse-grain sample') and ~5 μm('fine-grain sample'), respectively, and compared the results with those of a raw Mg alloy AZ31. The quantitative tensile tests with in situ SEM imaging clearly showed that fracture of ‘fine-grain sample' was dominated by intergranular cracks,while both trans-granular and intergranular cracks led to the final failure of the ‘coarse-grain samples'.It is expected that this in situ SEM characterization technique, coupled with quantitative tensile testing method, could be applicable for studying other grain-refined metals/alloys, allowing to optimize their mechanical performances by controlling the grain sizes and their gradient distribution.
基金the National Natural Science Foundation of China (Grant Nos. 21201129, 51374151), P. R. Chinathe Major Project for Science & Technology of Shanxi Province (20111101053)+2 种基金the Key Project for Science & Technology of coal base research in Shanxi Provincethe National Natural Science Foundation of Shanxi Province (Nos. 2011011020-2 and 2010021023-1)the Young Foundation of Shanxi Medical University (No. 057546)
文摘In order to increase the depth or concentration of Ti ion implantation of pure iron, the surface mechanical attrition treatment(SMAT), which can fabricate a nanometer-grained surface layer without porosity and contamination in a pure iron plate, was used before ion implantation. Ti ion was implanted into the SMA treated sample and coarse-grained counterpart by using a metal vapor vacuum arc source implanter. The changing of depth and concentration of Ti was studied in a function of implantation time.By optical microscopy, transmission electron microscopy and X-ray diffraction, the grain size of the nano structured surface was studied. Micro-hardness, friction and wear behavior of nano surface layers were studied. By energy dispersive X-ray spectroscopy and Auger electron spectroscopy, the chemical composition and concentration of Ti ion in the surface implantation layer were studied. Experimental results showed that the concentration of Ti increased dramatically compared with untreated coarsegrained samples, which is attributed to the existence of higher density of defects(supersaturated vacancies, dislocations, non-equilibrium grain boundaries etc.) and compression stress field in the SMA treated nanocrystallined surface layer. The interaction between the defects and the implanted solute atoms leads to the increment of solid solubility. But the implantation depth showed inconspicuous change. It is shown that the ion range is just relevant to the energy and mass of the ion, dose of injection,the mass and density of target material.