期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Enhanced initial biodegradation resistance of the biomedical Mg-Cu alloy by surface nanomodification
1
作者 Wen Zhang Ming-Chun Zhao +5 位作者 Zhenbo Wang Lili Tan Yingwei Qi Deng-Feng Yin Ke Yang Andrej Atrens 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2776-2788,共13页
Mg-Cu alloys are promising antibacterial implant materials.However,their clinical applications have been impeded by their high initial biodegradation rate,which can be alleviated using nanotechnology by for example su... Mg-Cu alloys are promising antibacterial implant materials.However,their clinical applications have been impeded by their high initial biodegradation rate,which can be alleviated using nanotechnology by for example surface nanomodification to obtain a gradient nanostructured surface layer.The present work(i)produced a gradient nanostructured surface layer with a∼500µm thickness on a Mg-0.2 Cu alloy by a surface mechanical grinding treatment(SMGT),and(ii)studied the biodegradation behavior in Hank's solution.The initial biodegradation rate of the SMGTed samples was significantly lower than that of the unSMGTed original counterparts,which was attributed to the surface nanocrystallization,and the fragmentation and re-dissolution of Mg_(2)Cu particles in the surface of the SMGTed Mg-0.2 Cu alloy.Furthermore,the SMGTed Mg-0.2 Cu alloy had good antibacterial efficacy.This work creatively used SMGT technology to produce a high-performance Mg alloy implant material. 展开更多
关键词 Mg-Cu alloy Gradient nanostructure BIODEGRADATION surface mechanical grinding treatment
下载PDF
Deformation and fracture behavior of commercially pure titanium with gradient nano-to-micron-grained surface layer 被引量:3
2
作者 尹雁飞 徐巍 +2 位作者 孙巧艳 肖林 孙军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期738-747,共10页
Titanium with gradient nano-to-micron scale grains from surface to matrix was fabricated by surface mechanical grinding treatment(SMGT) at room temperature.The SMGT-treated titanium shows higher strength than that of ... Titanium with gradient nano-to-micron scale grains from surface to matrix was fabricated by surface mechanical grinding treatment(SMGT) at room temperature.The SMGT-treated titanium shows higher strength than that of as-received one,but moderate ductility between those of ultra-fine grained(UFG) and coarse-grained titanium.Tensile stress-strain curves of SMGT-treated titanium show double strain hardening regimes.The strain hardening rate(dσ/dε) decreases with increasing strain in tensile deformation.The high strain hardening rate at initial yielding is attributed to nano-to-micron-grained surface layer.The low strain hardening rate at large plastic strain regime primarily results from coarse-grained matrix.The SMGT-treated titanium shows a ductile fracture mode with a large number of dimples.The small size of dimples in the treated surface layer is due to the combination of the high strength and strain hardening exponent.The difference between dimple size in nano-to-micron-grained surface layer and coarse-grained matrix is discussed in terms of plastic zone size at the tip of crack in the SMGT-treated titanium. 展开更多
关键词 surface mechanical grinding treatment commercially pure titanium gradient nano-to-micron grain strain hardening DIMPLE
下载PDF
Formation mechanism and wear behavior of gradient nanostructured Inconel 625 alloy 被引量:5
3
作者 Yu-bi GAO Xiu-yan LI +3 位作者 Yuan-jun MA Matthew KITCHEN Yu-tian DING Quan-shun LUO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第6期1910-1925,共16页
The formation mechanism and wear behavior of a gradient nanostructured(GNS) Inconel 625 alloy were investigated using SEM, TEM and ball-on-disc sliding wear tester. The results show that surface mechanical grinding tr... The formation mechanism and wear behavior of a gradient nanostructured(GNS) Inconel 625 alloy were investigated using SEM, TEM and ball-on-disc sliding wear tester. The results show that surface mechanical grinding treatment(SMGT) induced an approximately 800 μm-deep gradient microstructure, consisting of surface nano-grained,nano-laminated, nano-twined, and severely deformed layers, which resulted in a reduced gradient in micro-hardness from 6.95 GPa(topmost surface) to 2.77 GPa(coarse-grained matrix). The nano-grained layer resulted from the formation of high-density nano-twins and subsequent interaction between nano-twins and dislocations. The width and depth of the wear scar, wear loss volume, and wear rate of the SMGT-treated sample were smaller than those of untreated coarse-grained sample. Moreover, the wear mechanisms for both samples were mainly abrasive wear and adhesive wear, accompanied with mild oxidation wear. The notable wear resistance enhancement of the GNS Inconel 625 alloy was attributed to the high micro-hardness, high residual compressive stress, and high strain capacity of the GNS surface layer. 展开更多
关键词 Inconel 625 alloy surface mechanical grinding treatment gradient nanostructure formation mechanism wear behavior residual stress
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部