This article describes the development and application of a streamlined air control and response modeling system with a novel response surface modeling-linear coupled fitting method and a new module to provide streaml...This article describes the development and application of a streamlined air control and response modeling system with a novel response surface modeling-linear coupled fitting method and a new module to provide streamlined model data for PM_(2.5) attainment assessment in China.This method is capable of significantly reducing the dimensions required to establish a response surface model,as well as capturing more realistic response of PM_(2.5) to emission changes with a limited number of model simulations.The newly developed module establishes a data link between the system and the Software for Model Attainment Test—Community Edition(SMAT-CE),and has the ability to rapidly provide model responses to emission control scenarios for SMAT-CE using a simple interface.The performance of this streamlined system is demonstrated through a case study of the Yangtze River Delta(YRD) in China.Our results show that this system is capable of reproducing the Community Multi-Scale Air Quality(CMAQ) model simulation results with maximum mean normalized error 〈 3.5%.It is also demonstrated that primary emissions make a major contribution to ambient levels of PM_(2.5) in January and August(e.g.,more than50%contributed by primary emissions in Shanghai),and Shanghai needs to have regional emission control both locally and in its neighboring provinces to meet China's annual PM_(2.5)National Ambient Air Quality Standard.The streamlined system provides a real-time control/response assessment to identify the contributions of major emission sources to ambient PM_(2.5)(and potentially O_3 as well) and streamline air quality data for SMAT-CE to perform attainment assessments.展开更多
基金Financial support and data source for this work is provided by the US Environmental Protection Agency(No.OR13810-001.04 A10-0223-S001-A02)Guangzhou Environmental Protection Bureau(No.x2hj B2150020)+4 种基金the project of an integrated modeling and filed observational verification on the deposition of typical industrial point-source mercury emissions in the Pearl River Deltapartly supported by the funding of Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control(No.2011A060901011)the project of Atmospheric Haze Collaboration Control Technology Design(No.XDB05030400)from the Chinese Academy of Sciencesthe Ministry of Environmental Protection's Special Funds for Research on Public Welfare(No.201409002)Partly financial support is also provided by the Guangdong Provincial Department of Science and Technology,the project of demonstration research of air quality management cost-benefit analysis and attainment assessments technology(No.2014A050503019)
文摘This article describes the development and application of a streamlined air control and response modeling system with a novel response surface modeling-linear coupled fitting method and a new module to provide streamlined model data for PM_(2.5) attainment assessment in China.This method is capable of significantly reducing the dimensions required to establish a response surface model,as well as capturing more realistic response of PM_(2.5) to emission changes with a limited number of model simulations.The newly developed module establishes a data link between the system and the Software for Model Attainment Test—Community Edition(SMAT-CE),and has the ability to rapidly provide model responses to emission control scenarios for SMAT-CE using a simple interface.The performance of this streamlined system is demonstrated through a case study of the Yangtze River Delta(YRD) in China.Our results show that this system is capable of reproducing the Community Multi-Scale Air Quality(CMAQ) model simulation results with maximum mean normalized error 〈 3.5%.It is also demonstrated that primary emissions make a major contribution to ambient levels of PM_(2.5) in January and August(e.g.,more than50%contributed by primary emissions in Shanghai),and Shanghai needs to have regional emission control both locally and in its neighboring provinces to meet China's annual PM_(2.5)National Ambient Air Quality Standard.The streamlined system provides a real-time control/response assessment to identify the contributions of major emission sources to ambient PM_(2.5)(and potentially O_3 as well) and streamline air quality data for SMAT-CE to perform attainment assessments.