Enhancing the lifetime of perovskite solar cells(PSCs)is one of the essential challenges for their industrialization.Although the external encapsulation protects the perovskite device from the erosion of moisture and ...Enhancing the lifetime of perovskite solar cells(PSCs)is one of the essential challenges for their industrialization.Although the external encapsulation protects the perovskite device from the erosion of moisture and oxygen under various harsh conditions.However,the perovskite devices still undergo static and dynamic thermal stress during thermal and thermal cycling aging,respectively,resulting in irreversible damage to the morphology,component,and phase of stacked materials.Herein,the viscoelastic polymer polyvinyl butyral(PVB)material is designed onto the surface of perovskite films to form flexible interface encapsulation.After PVB interface encapsulation,the surface modulus of perovskite films decreases by nearly 50%,and the interface stress range under the dynamic temperature field(−40 to 85°C)drops from−42.5 to 64.8 MPa to−14.8 to 5.0 MPa.Besides,PVB forms chemical interactions with FA+cations and Pb^(2+),and the macroscopic residual stress is regulated and defects are reduced of the PVB encapsulated perovskite film.As a result,the optimized device's efficiency increases from 22.21%to 23.11%.Additionally,after 1500 h of thermal treatment(85°C),1000 h of damp heat test(85°C&85%RH),and 250 cycles of thermal cycling test(−40 to 85°C),the devices maintain 92.6%,85.8%,and 96.1%of their initial efficiencies,respectively.展开更多
Nanowires(NWs) exhibit size-dependent mechanical properties due to the high surface/volume ratio, in which temperature also plays an important role. The surface eigenstress model is further developed here to quantitat...Nanowires(NWs) exhibit size-dependent mechanical properties due to the high surface/volume ratio, in which temperature also plays an important role. The surface eigenstress model is further developed here to quantitatively predict the size-dependent mechanical properties of NWs and results in analytic formulas. Molecular dynamics(MD) simulations are conducted to study the size-dependent mechanical of [100], [110] and [111] Ni and Si nanowires within the temperature range of 100–400 K and the MD results verify perfectly the newly developed surface eigenstress model.展开更多
Five test sections with different additives and strategies were established to rehabilitate a State-maintained highway more effectively in Rhode Island (RI): control, calcium chloride, asphalt emulsion, Portland ce...Five test sections with different additives and strategies were established to rehabilitate a State-maintained highway more effectively in Rhode Island (RI): control, calcium chloride, asphalt emulsion, Portland cement and geogrid. Resilient moduli of subgrade soils and subbase materials before and after full depth rehabilitation were employed as input pa- rameters to predict the performance of pavement structures using AASHTOWare Pave- ment ME Design (Pavement ME) software in terms of rutting, cracking and roughness. It was attempted to use Level i input (which includes traffic full spectrum data, climate data and structural layer properties) for Pavement ME. Traffic data was obtained from a Weigh- in-Motion (WIM} instrument and Providence station was used for collecting climatic data. Volumetric properties, dynamic modulus and creep compliance were used as input pa- rameters for 19 mm (0.75 in.} warm mix asphalt (WMA) base and 12.S mm (0.5 in.) WMA surface layer. The results indicated that all test sections observed AC top-down (longitu- dinal) cracking except Portland cement section which passed for all criteria. The order in terms of performance (best to worst) for all test sections by Pavement ME was Portland cement, calcium chloride, control, geogrid, and asphalt emulsion. It was also observed that all test sections passed for both bottom up and top down fatigue cracking by increasing thickness of either of the two top asphalt layers. Test sections with five different base/ subbase materials were evaluated in last two years through visual condition survey and measurements of deflection and roughness to confirm the prediction, but there was no serious distress and roughness. Thus these experiments allowed selecting the best reha- bilitation/reconstruction techniques for the particular and/or similar highway, and a framework was formulated to select an optimal technique and/or strategy for future rehabilitation/reconstruction projects. Finally, guidelines for long-term evaluation were developed to verify short-term prediction and performance.展开更多
Let f : Ω→ f(Ω) belong to R^n be a W^1,1-homeomorphism with L^1-inegrable inner We show that finiteness of min{lipf(x), kf(x)), for every x∈ Ω/E, implies that f^-1 ∈ W^1,n and has finite distortion, pro...Let f : Ω→ f(Ω) belong to R^n be a W^1,1-homeomorphism with L^1-inegrable inner We show that finiteness of min{lipf(x), kf(x)), for every x∈ Ω/E, implies that f^-1 ∈ W^1,n and has finite distortion, provided that the exceptional set E has σ-finite H^1-measure.Moreover, f has finite distortion, differentiable a.e. and the Jacobian Jf 〉 0 a.e.展开更多
基金the National Natural Science Foundation of China(U21A20172,21975028)the China Postdoctoral Science Foundation under Grant Number 2023 M740167.
文摘Enhancing the lifetime of perovskite solar cells(PSCs)is one of the essential challenges for their industrialization.Although the external encapsulation protects the perovskite device from the erosion of moisture and oxygen under various harsh conditions.However,the perovskite devices still undergo static and dynamic thermal stress during thermal and thermal cycling aging,respectively,resulting in irreversible damage to the morphology,component,and phase of stacked materials.Herein,the viscoelastic polymer polyvinyl butyral(PVB)material is designed onto the surface of perovskite films to form flexible interface encapsulation.After PVB interface encapsulation,the surface modulus of perovskite films decreases by nearly 50%,and the interface stress range under the dynamic temperature field(−40 to 85°C)drops from−42.5 to 64.8 MPa to−14.8 to 5.0 MPa.Besides,PVB forms chemical interactions with FA+cations and Pb^(2+),and the macroscopic residual stress is regulated and defects are reduced of the PVB encapsulated perovskite film.As a result,the optimized device's efficiency increases from 22.21%to 23.11%.Additionally,after 1500 h of thermal treatment(85°C),1000 h of damp heat test(85°C&85%RH),and 250 cycles of thermal cycling test(−40 to 85°C),the devices maintain 92.6%,85.8%,and 96.1%of their initial efficiencies,respectively.
基金supported by the National Key R&D Program of China (Grant No. 2017YFB0701600)the National Natural Science Foundation of China (Grant No. 11672168)the Science and Technology Commission of Shanghai Municipality (Grant Nos. 15DZ2260300 and 16DZ2260600)
文摘Nanowires(NWs) exhibit size-dependent mechanical properties due to the high surface/volume ratio, in which temperature also plays an important role. The surface eigenstress model is further developed here to quantitatively predict the size-dependent mechanical properties of NWs and results in analytic formulas. Molecular dynamics(MD) simulations are conducted to study the size-dependent mechanical of [100], [110] and [111] Ni and Si nanowires within the temperature range of 100–400 K and the MD results verify perfectly the newly developed surface eigenstress model.
文摘Five test sections with different additives and strategies were established to rehabilitate a State-maintained highway more effectively in Rhode Island (RI): control, calcium chloride, asphalt emulsion, Portland cement and geogrid. Resilient moduli of subgrade soils and subbase materials before and after full depth rehabilitation were employed as input pa- rameters to predict the performance of pavement structures using AASHTOWare Pave- ment ME Design (Pavement ME) software in terms of rutting, cracking and roughness. It was attempted to use Level i input (which includes traffic full spectrum data, climate data and structural layer properties) for Pavement ME. Traffic data was obtained from a Weigh- in-Motion (WIM} instrument and Providence station was used for collecting climatic data. Volumetric properties, dynamic modulus and creep compliance were used as input pa- rameters for 19 mm (0.75 in.} warm mix asphalt (WMA) base and 12.S mm (0.5 in.) WMA surface layer. The results indicated that all test sections observed AC top-down (longitu- dinal) cracking except Portland cement section which passed for all criteria. The order in terms of performance (best to worst) for all test sections by Pavement ME was Portland cement, calcium chloride, control, geogrid, and asphalt emulsion. It was also observed that all test sections passed for both bottom up and top down fatigue cracking by increasing thickness of either of the two top asphalt layers. Test sections with five different base/ subbase materials were evaluated in last two years through visual condition survey and measurements of deflection and roughness to confirm the prediction, but there was no serious distress and roughness. Thus these experiments allowed selecting the best reha- bilitation/reconstruction techniques for the particular and/or similar highway, and a framework was formulated to select an optimal technique and/or strategy for future rehabilitation/reconstruction projects. Finally, guidelines for long-term evaluation were developed to verify short-term prediction and performance.
基金Supported partially by the Academy of Finland(Grant No.131477)the Magnus Ehrnrooth foundation
文摘Let f : Ω→ f(Ω) belong to R^n be a W^1,1-homeomorphism with L^1-inegrable inner We show that finiteness of min{lipf(x), kf(x)), for every x∈ Ω/E, implies that f^-1 ∈ W^1,n and has finite distortion, provided that the exceptional set E has σ-finite H^1-measure.Moreover, f has finite distortion, differentiable a.e. and the Jacobian Jf 〉 0 a.e.