Surface ground motion produced by underground blasts is significantly influenced by near-surface geological conditions.However,near-surface low-propagation velocity layers were always ignored in past analyses of groun...Surface ground motion produced by underground blasts is significantly influenced by near-surface geological conditions.However,near-surface low-propagation velocity layers were always ignored in past analyses of ground motions due to their thin thickness.With the rising concern about surface ground motions produced by the ascendant scale and frequentness of underground excavation and mining,close attention is gradually paid to ground blast vibrations.Therefore,systemic experiments were conducted and took seven months in an underground mine to clarify the variation of motion from underground rock to surface ground.The attenuation of surface ground peak particle velocities(PPVs)is compared to that in underground rock,and horizontal amplitudes are compared to vertical amplitudes.Differences between bedrock and surface ground vibrations are analyzed to illustrate the site effect of near-surface lower-propagation velocity layers.One-dimensional site response analysis is employed to quantify the influence of different geological profiles on surface ground vibrations.The experimental data and site response analysis allowed the following conclusions:(1)geological site effects mainly produce decreasing dominant frequency(DF)of surface ground vibrations;(2)the site amplification effect of blast vibration needs to be characterized by peak particle displacement(PPD);(3)shear waves(S-waves)begin to dominate and surface Rayleigh waves(R-waves)develop as blast-induced ground vibrations travel upward through rock and lower-velocity layers to the surface.The comparison of response relative displacement to a critical value is best to assess the potential for cracking on surface structures.展开更多
A series solution of displacement response of the ground surface in the presence of underground twin tunnels subjected to excitation of incident plane SV waves is derived by using Fourier-Bessel series expansion metho...A series solution of displacement response of the ground surface in the presence of underground twin tunnels subjected to excitation of incident plane SV waves is derived by using Fourier-Bessel series expansion method.The numerical parametric study shows that underground twin tunnels significantly amplify the nearby surface ground motion.It is suggested that the effect of subways on ground motion should be considered when the subways are planned and designed.展开更多
A closed-form analytical solution of surface motion of a semi-elliptical cylindrical hill for incident plane SH waves is presented. Although some previous analytical work had already dealt with hill topography of semi...A closed-form analytical solution of surface motion of a semi-elliptical cylindrical hill for incident plane SH waves is presented. Although some previous analytical work had already dealt with hill topography of semi-circular and shallow circular, our work aims at calculating surface motion of very prolate hill for high incident frequency, and explaining the special vibrating is checked by boundary conditions, numerical results for and some conclusions are obtained. properties of very prolate hill. Accuracy of the solution surface motion of oblate and prolate hills are calculated,展开更多
The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculat...The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculation. The test results indicate that the power function is a suitable form for describing the relationship between the ratio of the maximum dynamic shear modulus due to anisotropic and isotropic consolidations and the increment of the consolidation ratio. When compared to sand, the increment of the maximum dynamic shear modulus for undisturbed soil due to anisotropic consolidation is much larger. Using a one-dimensional equivalent linearization method, the earthquake influence factor and the characteristic period of the surface acceleration are calculated for two soil layers subjected to several typical earthquake waves. The calculated results show that the difference in nonlinear properties due to different consolidation ratios is generally not very notable, but the degree of its influence on the surface acceleration spectrum is remarkable for the occurrence of strong earthquakes. When compared to isotropic consolidation, the consideration of actual anisotropic consolidation causes the characteristic period to decrease and the earthquake influence factor to increase.展开更多
A series solution for surface motion amplification due to underground group cavities for incident plane P waves is derived by Fourier-Bessel series expansion method. It is shown that underground group cavities signifi...A series solution for surface motion amplification due to underground group cavities for incident plane P waves is derived by Fourier-Bessel series expansion method. It is shown that underground group cavities significantly am-plify the surface ground motion nearby. It is suggested that the effect of subways on ground motion should be con-sidered when the subways are planned and designed.展开更多
In this paper, towing tank experiments are conducted to study the behavior of flow on a model of the underwater vehicle with various shapes of bows, i.e. tango and standard bows in free surface motion tests. The total...In this paper, towing tank experiments are conducted to study the behavior of flow on a model of the underwater vehicle with various shapes of bows, i.e. tango and standard bows in free surface motion tests. The total resistances for different Froude numbers are considered experimentally. The towing tank is equipped with a trolley that can operate in through 0.05-6 m/s speed with ±0.02 m/s accuracy. Furthermore, the study is done on hydrodynamic coefficients i.e. total, residual and friction resistance coefficients, and the results are compared. Finally, the study on flow of wave fields around bows is done and wave filed around two bows are compared. The Froude number interval is between 0.099 and 0.349. Blockage fraction for the model is fixed to 0.005 3. The results showed that the residual resistance of the standard bow in 0.19 to 0.3 Froude number is more than the tango bow in surface motion which causes more total resistance for the submarine. Finally, details of wave generated by the bow are depicted and the effects of flow pattern on resistance drag are discussed.展开更多
An analytical solution for surface motion of a semi-cylindrical hill for incident plane SV waves was derived by using the wave function expansion method and the auxiliary function technique, and convergence of the sol...An analytical solution for surface motion of a semi-cylindrical hill for incident plane SV waves was derived by using the wave function expansion method and the auxiliary function technique, and convergence of the solution and accuracy of truncation were verified. The effect of incident frequency and angle as well as hill width on the surface motion of the hill was discussed by numerical examples. It was shown that, a hill greatly amplifies incident plane SV waves, and the maximal amplification may reach 4 times of that for free-field response; and for incident waves of low frequency, the maximal displacement amplitudes emerge mostly at the half-space, however, for incident waves of high frequency, the maximal displacement amplitudes appear mostly at the hill.展开更多
Jet force on the surface is typical for impinging jets towards the surface and it is very important in drying applications for force-sensitive surfaces. The designer should optimize the design parameters of industrial...Jet force on the surface is typical for impinging jets towards the surface and it is very important in drying applications for force-sensitive surfaces. The designer should optimize the design parameters of industrial drying equipment to achieve minimum pressure force between multiple jets and a moving curved surface. SST <em>k-ω</em> turbulence model is used to simulate a real geometry for industrial drying applications. The SST <em>k-ω</em> turbulence model succeeded with reasonable accuracy in reproducing the experimental results. The jet to surface distance, jet to jet spacing, jet inlet velocity, jet angle, and surface velocity are chosen as the design parameters. For the optimization of the impinging round jet, the pressure force coefficient on the moving curved surface is set as the objective function to be minimized. The SHERPA search algorithm is used to search for the optimal point from the weighted sum of all objectives method. One correlation is developed and validated for the pressure force coefficient. It is found that the pressure force coefficient is highly dependent on the nozzle to surface distance and jet angle but relatively insensitive to jet inlet velocity, jet to jet spacing, and surface velocity. The minimum pressure force coefficient correlates with a high value of nozzle to surface distance (tenfold diameter in this analysis) and a low value of the jet angle (40? in this analysis). The agreement in the prediction of the pressure force coefficient between the numerical simulation and developed correlation is found to be reasonable and all the data points deviate from the correlation approximately 8% on average.展开更多
A closed-form wave equation analytic solution of two-dimensional scattering and diffraction of outof-plane(SH) waves by an almost semi-circular shallow cylindrical hill on a flat, elastic and homogeneous half space ...A closed-form wave equation analytic solution of two-dimensional scattering and diffraction of outof-plane(SH) waves by an almost semi-circular shallow cylindrical hill on a flat, elastic and homogeneous half space is proposed by applying the discrete Fourier series expansions of sine and cosine functions. The semi-circular hill problem is discussed as a special case for the new formulated equation.Compared with the previous semi-circular cases solutions, the present method can give surface displacement amplitudes which agrees well with previous results. Although the proposed equation can only solve the problem of SH-waves diffracted by almost semi-circular shallow hills, the stress and displacement residual amplitudes are numerical insignificantly everywhere. Moreover, the influences of the depth-towidth ratio(a parameter defined in this paper to evaluate the shallowness of the topography of hills) on ground motions are presented and summarized. The limitations and errors of truncation from Graf’s addition theorem and Fourier series equations in the present paper are also discussed.展开更多
In this study, it was examined whether the dynamics of polymer chains at a surface is different from that in thebulk, and if so, to what extent they differ in terms of surface glass transition temperature and diffusio...In this study, it was examined whether the dynamics of polymer chains at a surface is different from that in thebulk, and if so, to what extent they differ in terms of surface glass transition temperature and diffusion coefficient. Obtainedresults clearly indicate that surface chains can travel for a relatively large distance in comparison with the characteristiclength scale of usual segmental motion even at a temperature below its bulk glass transition temperature, T_g^b. This isconsistent with our previous results that the surface glass transition temperature is much lower than the corresponding T_g^b.Also, it was experimentally revealed that there was a gradient of molecular motion in the surface region.展开更多
Biological water striders have advantages such as flexible movement,low disturbance to the water surface,and low noise.Researchers have developed a large number of biomimetic water strider robots based on their moveme...Biological water striders have advantages such as flexible movement,low disturbance to the water surface,and low noise.Researchers have developed a large number of biomimetic water strider robots based on their movement mechanism,which have broad application prospects in water quality testing,water surface reconnaissance,and search.This article mainly reviews the research progress of biomimetic water strider robots.First,the biological and kinematic characteristics of water striders are outlined,and some mechanical parameters of biological water striders are summarized.The basic equations of water strider movement are then described.Next,an overview is given of the past and current work on skating and jumping movements of biomimetic water strider robots based on surface tension and water pressure dominance.Based on the current research status of biomimetic water strider robots,the shortcomings of current research on biomimetic water striders are summarized,and the future development of biomimetic water strider robots is discussed.This article provides new insights for the design of biomimetic water strider robots.展开更多
It is of great interest to study the dynamical environment on the surface of non-spherical small bodies, especially for asteroids. This paper takes a simple case of a cube for instance, investigates the dynamics of a ...It is of great interest to study the dynamical environment on the surface of non-spherical small bodies, especially for asteroids. This paper takes a simple case of a cube for instance, investigates the dynamics of a particle on the surface of a rotating homogeneous cube, and derives fruitful results. Due to the symmetrical characteristic of the cube, the analysis includes motions on two different types of surfaces. For each surface, both the frictionless and friction cases are considered. (i) Without consideration of friction, the surface equilibria in both of the different surfaces are examined and periodic orbits are derived. The analysis of equilibria and periodic orbits could assist understanding the skeleton of motions on the surface of asteroids. (ii) For the friction cases, the conditions that the particle does not escape from the surface are examined. Due to the effect of the friction, there exist the equilibrium regions on the surface where the particle stays at rest, and the locations of them are found. Finally, the dust collection regions are predicted. Future work will extend to real asteroid shapes.展开更多
This paper presents a new numerical method to simulate the high velocity turbulent flow with free surface by solving two-dimensional incompressible unsteady Navier-Stokes Eqs. , together with the k-ε turbulence model...This paper presents a new numerical method to simulate the high velocity turbulent flow with free surface by solving two-dimensional incompressible unsteady Navier-Stokes Eqs. , together with the k-ε turbulence model. In order to treat the non-rectangular boundary (or curvilinear boundary), orthogonal boundary-fitted grid is used and the Navier-Stokes Eqs. and k-ε turbulence model are rewritten and discreted in orthogonal curvilinear coordinates. Meanwhile, gas-liquid two-field model theory is introduced to treat the free-surface problem.展开更多
基金supported by Natural Science Foundation of Jiangsu Province,China(Grant No.BK20220975)the National Natural Science Foundation of China(Grant Nos.51874350 and 41807259).
文摘Surface ground motion produced by underground blasts is significantly influenced by near-surface geological conditions.However,near-surface low-propagation velocity layers were always ignored in past analyses of ground motions due to their thin thickness.With the rising concern about surface ground motions produced by the ascendant scale and frequentness of underground excavation and mining,close attention is gradually paid to ground blast vibrations.Therefore,systemic experiments were conducted and took seven months in an underground mine to clarify the variation of motion from underground rock to surface ground.The attenuation of surface ground peak particle velocities(PPVs)is compared to that in underground rock,and horizontal amplitudes are compared to vertical amplitudes.Differences between bedrock and surface ground vibrations are analyzed to illustrate the site effect of near-surface lower-propagation velocity layers.One-dimensional site response analysis is employed to quantify the influence of different geological profiles on surface ground vibrations.The experimental data and site response analysis allowed the following conclusions:(1)geological site effects mainly produce decreasing dominant frequency(DF)of surface ground vibrations;(2)the site amplification effect of blast vibration needs to be characterized by peak particle displacement(PPD);(3)shear waves(S-waves)begin to dominate and surface Rayleigh waves(R-waves)develop as blast-induced ground vibrations travel upward through rock and lower-velocity layers to the surface.The comparison of response relative displacement to a critical value is best to assess the potential for cracking on surface structures.
基金National Natural Science Foundation of China(50378063)EYTP of MOESRF for ROCS,MOE
文摘A series solution of displacement response of the ground surface in the presence of underground twin tunnels subjected to excitation of incident plane SV waves is derived by using Fourier-Bessel series expansion method.The numerical parametric study shows that underground twin tunnels significantly amplify the nearby surface ground motion.It is suggested that the effect of subways on ground motion should be considered when the subways are planned and designed.
基金supported by National Natural Science Foundation of China under grant No.50978183
文摘A closed-form analytical solution of surface motion of a semi-elliptical cylindrical hill for incident plane SH waves is presented. Although some previous analytical work had already dealt with hill topography of semi-circular and shallow circular, our work aims at calculating surface motion of very prolate hill for high incident frequency, and explaining the special vibrating is checked by boundary conditions, numerical results for and some conclusions are obtained. properties of very prolate hill. Accuracy of the solution surface motion of oblate and prolate hills are calculated,
基金National Natural Science Foundation of China under Grant No.51108163Natural Science Foundation of Heilongjiang Province under Grant No.E201104
文摘The dynamic shear modulus for three types of undisturbed soil under different consolidation ratios is presented by using the resonant column test method. Its effects on surface ground motion is illustrated by calculation. The test results indicate that the power function is a suitable form for describing the relationship between the ratio of the maximum dynamic shear modulus due to anisotropic and isotropic consolidations and the increment of the consolidation ratio. When compared to sand, the increment of the maximum dynamic shear modulus for undisturbed soil due to anisotropic consolidation is much larger. Using a one-dimensional equivalent linearization method, the earthquake influence factor and the characteristic period of the surface acceleration are calculated for two soil layers subjected to several typical earthquake waves. The calculated results show that the difference in nonlinear properties due to different consolidation ratios is generally not very notable, but the degree of its influence on the surface acceleration spectrum is remarkable for the occurrence of strong earthquakes. When compared to isotropic consolidation, the consideration of actual anisotropic consolidation causes the characteristic period to decrease and the earthquake influence factor to increase.
基金Supported by National Natural Science Foundation of China (50378063), Excellent Young Teachers Program of MOE and SRF for ROCS, MOE.
文摘A series solution for surface motion amplification due to underground group cavities for incident plane P waves is derived by Fourier-Bessel series expansion method. It is shown that underground group cavities significantly am-plify the surface ground motion nearby. It is suggested that the effect of subways on ground motion should be con-sidered when the subways are planned and designed.
文摘In this paper, towing tank experiments are conducted to study the behavior of flow on a model of the underwater vehicle with various shapes of bows, i.e. tango and standard bows in free surface motion tests. The total resistances for different Froude numbers are considered experimentally. The towing tank is equipped with a trolley that can operate in through 0.05-6 m/s speed with ±0.02 m/s accuracy. Furthermore, the study is done on hydrodynamic coefficients i.e. total, residual and friction resistance coefficients, and the results are compared. Finally, the study on flow of wave fields around bows is done and wave filed around two bows are compared. The Froude number interval is between 0.099 and 0.349. Blockage fraction for the model is fixed to 0.005 3. The results showed that the residual resistance of the standard bow in 0.19 to 0.3 Froude number is more than the tango bow in surface motion which causes more total resistance for the submarine. Finally, details of wave generated by the bow are depicted and the effects of flow pattern on resistance drag are discussed.
基金National Natural Science Foundation of China (50378063) and Program for New Century Excellent Talents in University.
文摘An analytical solution for surface motion of a semi-cylindrical hill for incident plane SV waves was derived by using the wave function expansion method and the auxiliary function technique, and convergence of the solution and accuracy of truncation were verified. The effect of incident frequency and angle as well as hill width on the surface motion of the hill was discussed by numerical examples. It was shown that, a hill greatly amplifies incident plane SV waves, and the maximal amplification may reach 4 times of that for free-field response; and for incident waves of low frequency, the maximal displacement amplitudes emerge mostly at the half-space, however, for incident waves of high frequency, the maximal displacement amplitudes appear mostly at the hill.
文摘Jet force on the surface is typical for impinging jets towards the surface and it is very important in drying applications for force-sensitive surfaces. The designer should optimize the design parameters of industrial drying equipment to achieve minimum pressure force between multiple jets and a moving curved surface. SST <em>k-ω</em> turbulence model is used to simulate a real geometry for industrial drying applications. The SST <em>k-ω</em> turbulence model succeeded with reasonable accuracy in reproducing the experimental results. The jet to surface distance, jet to jet spacing, jet inlet velocity, jet angle, and surface velocity are chosen as the design parameters. For the optimization of the impinging round jet, the pressure force coefficient on the moving curved surface is set as the objective function to be minimized. The SHERPA search algorithm is used to search for the optimal point from the weighted sum of all objectives method. One correlation is developed and validated for the pressure force coefficient. It is found that the pressure force coefficient is highly dependent on the nozzle to surface distance and jet angle but relatively insensitive to jet inlet velocity, jet to jet spacing, and surface velocity. The minimum pressure force coefficient correlates with a high value of nozzle to surface distance (tenfold diameter in this analysis) and a low value of the jet angle (40? in this analysis). The agreement in the prediction of the pressure force coefficient between the numerical simulation and developed correlation is found to be reasonable and all the data points deviate from the correlation approximately 8% on average.
文摘A closed-form wave equation analytic solution of two-dimensional scattering and diffraction of outof-plane(SH) waves by an almost semi-circular shallow cylindrical hill on a flat, elastic and homogeneous half space is proposed by applying the discrete Fourier series expansions of sine and cosine functions. The semi-circular hill problem is discussed as a special case for the new formulated equation.Compared with the previous semi-circular cases solutions, the present method can give surface displacement amplitudes which agrees well with previous results. Although the proposed equation can only solve the problem of SH-waves diffracted by almost semi-circular shallow hills, the stress and displacement residual amplitudes are numerical insignificantly everywhere. Moreover, the influences of the depth-towidth ratio(a parameter defined in this paper to evaluate the shallowness of the topography of hills) on ground motions are presented and summarized. The limitations and errors of truncation from Graf’s addition theorem and Fourier series equations in the present paper are also discussed.
基金This work was in part supported by a Gran-in-Aid for Scientific Research (A)(#13355034) from the Ministry of Education, Science, Sports, and Culture, Japan.
文摘In this study, it was examined whether the dynamics of polymer chains at a surface is different from that in thebulk, and if so, to what extent they differ in terms of surface glass transition temperature and diffusion coefficient. Obtainedresults clearly indicate that surface chains can travel for a relatively large distance in comparison with the characteristiclength scale of usual segmental motion even at a temperature below its bulk glass transition temperature, T_g^b. This isconsistent with our previous results that the surface glass transition temperature is much lower than the corresponding T_g^b.Also, it was experimentally revealed that there was a gradient of molecular motion in the surface region.
基金supported in part by the National Natural Science Foundation of China(No.11972170).
文摘Biological water striders have advantages such as flexible movement,low disturbance to the water surface,and low noise.Researchers have developed a large number of biomimetic water strider robots based on their movement mechanism,which have broad application prospects in water quality testing,water surface reconnaissance,and search.This article mainly reviews the research progress of biomimetic water strider robots.First,the biological and kinematic characteristics of water striders are outlined,and some mechanical parameters of biological water striders are summarized.The basic equations of water strider movement are then described.Next,an overview is given of the past and current work on skating and jumping movements of biomimetic water strider robots based on surface tension and water pressure dominance.Based on the current research status of biomimetic water strider robots,the shortcomings of current research on biomimetic water striders are summarized,and the future development of biomimetic water strider robots is discussed.This article provides new insights for the design of biomimetic water strider robots.
基金supported by the National Basic Research Program of China (Grant No. 2012CB720000)the National Natural Science Foundation of China (Grant No. 11072122)
文摘It is of great interest to study the dynamical environment on the surface of non-spherical small bodies, especially for asteroids. This paper takes a simple case of a cube for instance, investigates the dynamics of a particle on the surface of a rotating homogeneous cube, and derives fruitful results. Due to the symmetrical characteristic of the cube, the analysis includes motions on two different types of surfaces. For each surface, both the frictionless and friction cases are considered. (i) Without consideration of friction, the surface equilibria in both of the different surfaces are examined and periodic orbits are derived. The analysis of equilibria and periodic orbits could assist understanding the skeleton of motions on the surface of asteroids. (ii) For the friction cases, the conditions that the particle does not escape from the surface are examined. Due to the effect of the friction, there exist the equilibrium regions on the surface where the particle stays at rest, and the locations of them are found. Finally, the dust collection regions are predicted. Future work will extend to real asteroid shapes.
文摘This paper presents a new numerical method to simulate the high velocity turbulent flow with free surface by solving two-dimensional incompressible unsteady Navier-Stokes Eqs. , together with the k-ε turbulence model. In order to treat the non-rectangular boundary (or curvilinear boundary), orthogonal boundary-fitted grid is used and the Navier-Stokes Eqs. and k-ε turbulence model are rewritten and discreted in orthogonal curvilinear coordinates. Meanwhile, gas-liquid two-field model theory is introduced to treat the free-surface problem.