A hot-working AISI H13 tool steel was subjected to a combined process consisting of surface nanocrystallization(SNC)and chromizing treatment successively.The composition,microstructure,hardness and wear resistance of ...A hot-working AISI H13 tool steel was subjected to a combined process consisting of surface nanocrystallization(SNC)and chromizing treatment successively.The composition,microstructure,hardness and wear resistance of the chromized layer were characterized by using the scanning and transmission electron microscopy,a nano-indenter and a tribo-meter.It was shown that a continuous chromized layer of approximately 30 μm in thickness was formed on the SNC specimen after a dual chromizing treatment at both 600℃ and 1050℃ consecutively,as thick as about 3 times of that on the coarse-grained specimen after the same chromizing treatment.In addition,the wear resistance of the SNC-chromized specimen was enhanced significantly,due to a smaller grain size and a higher hardness,as well as smoother gradient variations of the microstructure,composition and hardness across a greater depth in the formed chromized surface layer.展开更多
Biomedical metallic materials are commonly used in the repair and replacement of human tissues.After the materials are implanted in the human body,the implants can rub against human tissue or other implants,resulting ...Biomedical metallic materials are commonly used in the repair and replacement of human tissues.After the materials are implanted in the human body,the implants can rub against human tissue or other implants,resulting in wear and tear of the implants.The wear and tear of implants in the human body can lead to osteolysis and inflammation,which can affect the longevity of the implant and human health.For the sake of human health and the longevity of implants,it is essential to study the frictional and wear properties of biomedical metallic materials.The present review summarizes the current research on the frictional and wear properties of biomedical metallic materials in recent years,as well as the methods and techniques to improve the frictional and wear properties of the materials.The significance of the present review lies in that it could provide momentus information for further investigation of the tribological properties of biomedical metallic materials.展开更多
Cr3 C2-NiCr particles were injected into the melted surface of Q235 low carbon steel to make a surface metal matrix composite (MMC) layer by gas tungsten are melt injection (GTAMI) process. Hardness of the surface...Cr3 C2-NiCr particles were injected into the melted surface of Q235 low carbon steel to make a surface metal matrix composite (MMC) layer by gas tungsten are melt injection (GTAMI) process. Hardness of the surface MMC layer was tested. Wear resistance of the surface MMC was investigated with a ball-on-disk dry sliding setup. Microstrnetures of the surface MMC layer and morphology of the worn surfaces were investigated with scanning electron microscopy (SEM). The results showed that the hardness of the MMC was as high as 1 960. 7 HV. Wear loss of the upper part of the MMC layer is onlyO. 8% of that of the substrate under the dry sliding condition given. Wear loss of the bottom part is 2. 5 % of that of the substrate.展开更多
The effect of rare earth (RE) oxide on the microstructure and properties of TiC based cermet/Cu alloy composite hardfacing materials was investigated by using scanning electron microscope (SEM), transmission electron...The effect of rare earth (RE) oxide on the microstructure and properties of TiC based cermet/Cu alloy composite hardfacing materials was investigated by using scanning electron microscope (SEM), transmission electron microscope (TEM), impact test and wear test. The mechanism of RE oxide for improving the phase structure and the impact toughness was also discussed. The experimental results indicate that the microstructure of the matrix can be refined, and the micro-porous defects can be eliminated by adding RE oxide into the composite materials. The polycrystalline and amorphous phase structure is formed at the interface of cermet and matrix metal. The formed structure enhances the conjoint strength of interface. The frictional wear resistance can be improved obviously, although the microhardness of the matrix metal can not be effectively increased by adding RE oxide.展开更多
Founded in 2012, the National Joint Engineering Research Center of High Performance Metal Wear Resistant Materials Technology at Jinan University, one of the"211"key national universities in China, specializ...Founded in 2012, the National Joint Engineering Research Center of High Performance Metal Wear Resistant Materials Technology at Jinan University, one of the"211"key national universities in China, specializes in the research and development of iron based wear resistant materials and their casting technologies to provide support to the production process.展开更多
Founded in 2012,the National Joint Engineering Research Center of High Performance Metal Wear Resistant Materials Technology at Jinan University,one of the'211'key national universities in China,specializes in...Founded in 2012,the National Joint Engineering Research Center of High Performance Metal Wear Resistant Materials Technology at Jinan University,one of the'211'key national universities in China,specializes in the research and development of iron based wear resistant materials and their casting technologies to provide support to the production process.The Research Center serves the'Guangdong Province Ceeusro Innovation Platform for Common Technology of High Performance Wear Resistant Materials”,“Guangdong Province Engineering Research Center for Wear Resistant and Special Functional Materials”.展开更多
The morphology of carbides, as well as the generation and propagation of fatigue cracks in a wear resistant white cast iron after impact fatigue test were observed by means of optical microscope and SEM, and the relat...The morphology of carbides, as well as the generation and propagation of fatigue cracks in a wear resistant white cast iron after impact fatigue test were observed by means of optical microscope and SEM, and the relationship among the content of RE (rare earths) in the wear resistant white cast iron and the heating temperature as well as the length and propagation speed of the fatigue cracks were determined. Based on the obtained results, the effect of RE modification and heat treatment on the impact fatigue property was further studied. Experimental results show that addition of RE can defer the time required for the generation of fatigue cracks, reduce their propagation speed and increase the impact fatigue resistance. The aforesaid effect is more noticeable in case of combined RE modification with heat treatment, which can be attributed to the variation in morphology and the distribution of the eutectic carbide network.展开更多
Mathematical models between surfacing welding properties of C, Cr, Mo, V, W alloy system and encode factors of alloy additives are established by test methods of advanced trial optimizing technology and computer assis...Mathematical models between surfacing welding properties of C, Cr, Mo, V, W alloy system and encode factors of alloy additives are established by test methods of advanced trial optimizing technology and computer assistant design (CAD). They help to draw unitary functions and binary isoclines diagrams through which the influence of encode factorial linearity, nonlinear effect and factors interaction of alloy additives on the performances of surfacing welding can be analyzed directly and quantitatively. Meanwhile, the performances of deposited metal can also be predicted according to the content of alloy additives.展开更多
The influence of rare earths content on carbide morphology and mechanical properties of wear resistance of white cast iron was studied by means of metallographic examination,scanning electron microscopic examination a...The influence of rare earths content on carbide morphology and mechanical properties of wear resistance of white cast iron was studied by means of metallographic examination,scanning electron microscopic examination and mechanical property test. The experiment results show that RE can change carbides from continuous network to isolated particles and improve the mechanical properties,especially in combination with proper heat treatment. The optimum properties of wear resistance of white cast iron modified by RE of 0.045% can be obtained by normalization at 960 ℃ for 2 h.展开更多
The formation and growth of thermal fatigue crack and the function of RE and heat treatment in wear resistance of cast iron containing low alloy were investigated,and it was analyzed in view of the activation energy f...The formation and growth of thermal fatigue crack and the function of RE and heat treatment in wear resistance of cast iron containing low alloy were investigated,and it was analyzed in view of the activation energy for the crack′s propagation. The results show that the thermal fatigue cracks are mainly generated at eutectic carbides,and the cracks are grown by themselves spreading and joining each other. RE can improve the eutectic carbide′s morphology,inhibit the generation and propagation of thermal fatigue cracks,therefore,promote the activation energy for the crack′s propagation,and especially,which is more noticeable in case of the RE modification in combination with heat treatment.展开更多
基金supported by the National High-Tech.R&D Program(the National 863 plans projects,Grant No.2007AA03Z352)the National Science Foundation of China(Grant No.50701044 and 50890171)
文摘A hot-working AISI H13 tool steel was subjected to a combined process consisting of surface nanocrystallization(SNC)and chromizing treatment successively.The composition,microstructure,hardness and wear resistance of the chromized layer were characterized by using the scanning and transmission electron microscopy,a nano-indenter and a tribo-meter.It was shown that a continuous chromized layer of approximately 30 μm in thickness was formed on the SNC specimen after a dual chromizing treatment at both 600℃ and 1050℃ consecutively,as thick as about 3 times of that on the coarse-grained specimen after the same chromizing treatment.In addition,the wear resistance of the SNC-chromized specimen was enhanced significantly,due to a smaller grain size and a higher hardness,as well as smoother gradient variations of the microstructure,composition and hardness across a greater depth in the formed chromized surface layer.
基金financially supported by the National Natural Science Foundation of China(No.31700819)the Young Elite Scientists Sponsorship Program by CAST(No.2018QNRC001)the Fundamental Research Funds for the Central Universities(No.FRF-TP-20-05B)。
文摘Biomedical metallic materials are commonly used in the repair and replacement of human tissues.After the materials are implanted in the human body,the implants can rub against human tissue or other implants,resulting in wear and tear of the implants.The wear and tear of implants in the human body can lead to osteolysis and inflammation,which can affect the longevity of the implant and human health.For the sake of human health and the longevity of implants,it is essential to study the frictional and wear properties of biomedical metallic materials.The present review summarizes the current research on the frictional and wear properties of biomedical metallic materials in recent years,as well as the methods and techniques to improve the frictional and wear properties of the materials.The significance of the present review lies in that it could provide momentus information for further investigation of the tribological properties of biomedical metallic materials.
文摘Cr3 C2-NiCr particles were injected into the melted surface of Q235 low carbon steel to make a surface metal matrix composite (MMC) layer by gas tungsten are melt injection (GTAMI) process. Hardness of the surface MMC layer was tested. Wear resistance of the surface MMC was investigated with a ball-on-disk dry sliding setup. Microstrnetures of the surface MMC layer and morphology of the worn surfaces were investigated with scanning electron microscopy (SEM). The results showed that the hardness of the MMC was as high as 1 960. 7 HV. Wear loss of the upper part of the MMC layer is onlyO. 8% of that of the substrate under the dry sliding condition given. Wear loss of the bottom part is 2. 5 % of that of the substrate.
文摘The effect of rare earth (RE) oxide on the microstructure and properties of TiC based cermet/Cu alloy composite hardfacing materials was investigated by using scanning electron microscope (SEM), transmission electron microscope (TEM), impact test and wear test. The mechanism of RE oxide for improving the phase structure and the impact toughness was also discussed. The experimental results indicate that the microstructure of the matrix can be refined, and the micro-porous defects can be eliminated by adding RE oxide into the composite materials. The polycrystalline and amorphous phase structure is formed at the interface of cermet and matrix metal. The formed structure enhances the conjoint strength of interface. The frictional wear resistance can be improved obviously, although the microhardness of the matrix metal can not be effectively increased by adding RE oxide.
文摘Founded in 2012, the National Joint Engineering Research Center of High Performance Metal Wear Resistant Materials Technology at Jinan University, one of the"211"key national universities in China, specializes in the research and development of iron based wear resistant materials and their casting technologies to provide support to the production process.
文摘Founded in 2012,the National Joint Engineering Research Center of High Performance Metal Wear Resistant Materials Technology at Jinan University,one of the'211'key national universities in China,specializes in the research and development of iron based wear resistant materials and their casting technologies to provide support to the production process.The Research Center serves the'Guangdong Province Ceeusro Innovation Platform for Common Technology of High Performance Wear Resistant Materials”,“Guangdong Province Engineering Research Center for Wear Resistant and Special Functional Materials”.
文摘The morphology of carbides, as well as the generation and propagation of fatigue cracks in a wear resistant white cast iron after impact fatigue test were observed by means of optical microscope and SEM, and the relationship among the content of RE (rare earths) in the wear resistant white cast iron and the heating temperature as well as the length and propagation speed of the fatigue cracks were determined. Based on the obtained results, the effect of RE modification and heat treatment on the impact fatigue property was further studied. Experimental results show that addition of RE can defer the time required for the generation of fatigue cracks, reduce their propagation speed and increase the impact fatigue resistance. The aforesaid effect is more noticeable in case of combined RE modification with heat treatment, which can be attributed to the variation in morphology and the distribution of the eutectic carbide network.
文摘Mathematical models between surfacing welding properties of C, Cr, Mo, V, W alloy system and encode factors of alloy additives are established by test methods of advanced trial optimizing technology and computer assistant design (CAD). They help to draw unitary functions and binary isoclines diagrams through which the influence of encode factorial linearity, nonlinear effect and factors interaction of alloy additives on the performances of surfacing welding can be analyzed directly and quantitatively. Meanwhile, the performances of deposited metal can also be predicted according to the content of alloy additives.
文摘The influence of rare earths content on carbide morphology and mechanical properties of wear resistance of white cast iron was studied by means of metallographic examination,scanning electron microscopic examination and mechanical property test. The experiment results show that RE can change carbides from continuous network to isolated particles and improve the mechanical properties,especially in combination with proper heat treatment. The optimum properties of wear resistance of white cast iron modified by RE of 0.045% can be obtained by normalization at 960 ℃ for 2 h.
文摘The formation and growth of thermal fatigue crack and the function of RE and heat treatment in wear resistance of cast iron containing low alloy were investigated,and it was analyzed in view of the activation energy for the crack′s propagation. The results show that the thermal fatigue cracks are mainly generated at eutectic carbides,and the cracks are grown by themselves spreading and joining each other. RE can improve the eutectic carbide′s morphology,inhibit the generation and propagation of thermal fatigue cracks,therefore,promote the activation energy for the crack′s propagation,and especially,which is more noticeable in case of the RE modification in combination with heat treatment.