This study examines the effectiveness of adaptive observation experiments using the ensemble transformation sensitivity(ETS) method to improve precipitation forecasts during heavy rainfall events in South China and th...This study examines the effectiveness of adaptive observation experiments using the ensemble transformation sensitivity(ETS) method to improve precipitation forecasts during heavy rainfall events in South China and the Sichuan Basin. High-resolution numerical models are employed to simulate adaptive observations. By identifying the sensitive areas of key weather system positions 42 hours before heavy rainfall events, the adaptive observations improve the prediction of jet streams, strong winds, and shear lines, which are essential for accurate heavy rainfall forecasting. This improvement is reflected in both the precipitation structure and location accuracy within the verification region. In South China, targeted observations enhance rainfall predictions by improving water vapor transport. In the Sichuan Basin, adaptive observations refine water vapor transport and adjust vortex dynamics. This research highlights the importance of accurately predicting shear lines and jet streams for forecasting heavy rainfall in these areas. Overall, this study found that adaptive observation enhances the precipitation forecast skills of the structure and location for heavy rainfall in South China and the Sichuan Basin, emphasizing their potential utility in operational numerical weather prediction.展开更多
The first version of the Brazilian Oceano- graphic Modeling and Observation Network (REMO) ocean data assimilation system into the Hybrid Coordi- nate Ocean Model (HYCOM) (RODAS H) has recently been constructed ...The first version of the Brazilian Oceano- graphic Modeling and Observation Network (REMO) ocean data assimilation system into the Hybrid Coordi- nate Ocean Model (HYCOM) (RODAS H) has recently been constructed for research and operational purposes. The system is based on a multivariate Ensemble Optimal Interpolation (EnOI) scheme and considers the high fre- quency variability of the model error co-variance matrix. The EnOl can assimilate sea surface temperature (SST), satellite along-track and gridded sea level anomalies (SLA), and vertical profiles of temperature (T) and salinity (S) from Argo. The first observing system experiment was carried out over the Atlantic Ocean (78°S-50°N, 100°W-20°E) with HYCOM forced with atmospheric reanalysis from 1 January to 30 June 2010. Five integra- tions were performed, including the control run without assimilation. In the other four, different observations were assimilated: SST only (A SST); Argo T-S profiles only (AArgo); along-track SLA only (A_SLA); and all data employed in the previous runs (A_All). The A_SST, A_Argo, and A_SLA runs were very effective in improv- ing the representation of the assimilated variables, but they had relatively little impact on the variables that were not assimilated. In particular, only the assimilation of S was able to reduce the deviation of S with respect to ob- servations. Overall, the A_All run produced a good analy- sis by reducing the deviation of SST, T, and S with respect to the control run by 39%, 18%, and 30%, respectively, and by increasing the correlation of SLA by 81%.展开更多
An intrinsic property of almost any physical measuring device is that it makes observations which are slightly blurred in time. The authors consider a nudging-based approach for data assimilation that constructs an ap...An intrinsic property of almost any physical measuring device is that it makes observations which are slightly blurred in time. The authors consider a nudging-based approach for data assimilation that constructs an approximate solution based on a feedback control mechanism that is designed to account for observations that have been blurred by a moving time average. Analysis of this nudging model in the context of the subcritical surface quasi-geostrophic equation shows, provided the time-averaging window is sufficiently small and the resolution of the observations sufficiently fine, that the approximating solution converges exponentially fast to the observed solution over time. In particular,the authors demonstrate that observational data with a small blur in time possess no significant obstructions to data assimilation provided that the nudging properly takes the time averaging into account. Two key ingredients in our analysis are additional boundedness properties for the relevant interpolant observation operators and a non-local Gronwall inequality.展开更多
往返平飘式探空观测是我国研发的一种新型高空观测技术,除了具备与传统探空观测一致的上升段大气垂直廓线观测能力,同时还增加了平飘段和下降段的大气探测,自动实现了探测廓线的时空加密。利用ERA5再分析资料作为“真值”,利用往返平飘...往返平飘式探空观测是我国研发的一种新型高空观测技术,除了具备与传统探空观测一致的上升段大气垂直廓线观测能力,同时还增加了平飘段和下降段的大气探测,自动实现了探测廓线的时空加密。利用ERA5再分析资料作为“真值”,利用往返平飘式探空模拟仿真系统构造了往返式探空模拟观测,基于CMA-MESO区域模式和3D-Var同化系统进行了观测系统模拟试验(Observing System Simulation Experiments,OSSEs)。数值试验结果表明:相比传统单次上升段探空观测,往返平飘式探空在全国组网的情况下,其增加的下降段模拟探空观测,能够有效提高CMA-MESO的降水预报技巧,不同降水量级的ETS评分提高约2%~5%,同时改进要素场(温、湿场和风场)的预报,改进率约为2%~5%。此外,典型天气个例分析结果表明,增加往返平飘式探空观测能够改善模式初值偏差,从而更准确地模拟降水分布。该文的研究结论为往返平飘式探空的未来科学布局和应用提供了理论支撑。展开更多
Since the North American and Global Land Data Assimilation Systems(NLDAS and GLDAS) were established in2004, significant progress has been made in development of regional and global LDASs. National, regional, projectb...Since the North American and Global Land Data Assimilation Systems(NLDAS and GLDAS) were established in2004, significant progress has been made in development of regional and global LDASs. National, regional, projectbased, and global LDASs are widely developed across the world. This paper summarizes and overviews the development, current status, applications, challenges, and future prospects of these LDASs. We first introduce various regional and global LDASs including their development history and innovations, and then discuss the evaluation, validation, and applications(from numerical model prediction to water resources management) of these LDASs. More importantly, we document in detail some specific challenges that the LDASs are facing: quality of the in-situ observations, satellite retrievals, reanalysis data, surface meteorological forcing data, and soil and vegetation databases; land surface model physical process treatment and parameter calibration; land data assimilation difficulties; and spatial scale incompatibility problems. Finally, some prospects such as the use of land information system software, the unified global LDAS system with nesting concept and hyper-resolution, and uncertainty estimates for model structure,parameters, and forcing are discussed.展开更多
基金jointly supported by the Guangdong Province University Student Innovation and Entrepreneurship Project (580520049)the Guangdong Ocean University Scientific Research Startup Fund (R20021)the Key Laboratory of Plateau and Basin Rainstorm and Drought Disasters in Sichuan Province Open Research Fund (SZKT201902)。
文摘This study examines the effectiveness of adaptive observation experiments using the ensemble transformation sensitivity(ETS) method to improve precipitation forecasts during heavy rainfall events in South China and the Sichuan Basin. High-resolution numerical models are employed to simulate adaptive observations. By identifying the sensitive areas of key weather system positions 42 hours before heavy rainfall events, the adaptive observations improve the prediction of jet streams, strong winds, and shear lines, which are essential for accurate heavy rainfall forecasting. This improvement is reflected in both the precipitation structure and location accuracy within the verification region. In South China, targeted observations enhance rainfall predictions by improving water vapor transport. In the Sichuan Basin, adaptive observations refine water vapor transport and adjust vortex dynamics. This research highlights the importance of accurately predicting shear lines and jet streams for forecasting heavy rainfall in these areas. Overall, this study found that adaptive observation enhances the precipitation forecast skills of the structure and location for heavy rainfall in South China and the Sichuan Basin, emphasizing their potential utility in operational numerical weather prediction.
基金financially supported by the Brazilian State oil company Petróleo Brasileiro S. A. (Petrobras) and Agência Nacional de Petróleo (ANP), Gás Natural e Biocombustíveis, Brazil, via the Oceanographic Modeling and Observation Network (REMO)support of the Coordenao de Aperfeioamento de Pessoal de Nível Superior (CAPES), Ministry of Education of Brazil (Proc. BEX 3957/13-6)
文摘The first version of the Brazilian Oceano- graphic Modeling and Observation Network (REMO) ocean data assimilation system into the Hybrid Coordi- nate Ocean Model (HYCOM) (RODAS H) has recently been constructed for research and operational purposes. The system is based on a multivariate Ensemble Optimal Interpolation (EnOI) scheme and considers the high fre- quency variability of the model error co-variance matrix. The EnOl can assimilate sea surface temperature (SST), satellite along-track and gridded sea level anomalies (SLA), and vertical profiles of temperature (T) and salinity (S) from Argo. The first observing system experiment was carried out over the Atlantic Ocean (78°S-50°N, 100°W-20°E) with HYCOM forced with atmospheric reanalysis from 1 January to 30 June 2010. Five integra- tions were performed, including the control run without assimilation. In the other four, different observations were assimilated: SST only (A SST); Argo T-S profiles only (AArgo); along-track SLA only (A_SLA); and all data employed in the previous runs (A_All). The A_SST, A_Argo, and A_SLA runs were very effective in improv- ing the representation of the assimilated variables, but they had relatively little impact on the variables that were not assimilated. In particular, only the assimilation of S was able to reduce the deviation of S with respect to ob- servations. Overall, the A_All run produced a good analy- sis by reducing the deviation of SST, T, and S with respect to the control run by 39%, 18%, and 30%, respectively, and by increasing the correlation of SLA by 81%.
基金supported by NSF Grants DMS-1418911,DMS-1418928,ONR Grant N00014-15-1-2333the Einstein Stiftung/Foundation-Berlin+1 种基金the Einstein Visiting Fellow Programthe John Simon Guggenheim Memorial Foundation
文摘An intrinsic property of almost any physical measuring device is that it makes observations which are slightly blurred in time. The authors consider a nudging-based approach for data assimilation that constructs an approximate solution based on a feedback control mechanism that is designed to account for observations that have been blurred by a moving time average. Analysis of this nudging model in the context of the subcritical surface quasi-geostrophic equation shows, provided the time-averaging window is sufficiently small and the resolution of the observations sufficiently fine, that the approximating solution converges exponentially fast to the observed solution over time. In particular,the authors demonstrate that observational data with a small blur in time possess no significant obstructions to data assimilation provided that the nudging properly takes the time averaging into account. Two key ingredients in our analysis are additional boundedness properties for the relevant interpolant observation operators and a non-local Gronwall inequality.
文摘往返平飘式探空观测是我国研发的一种新型高空观测技术,除了具备与传统探空观测一致的上升段大气垂直廓线观测能力,同时还增加了平飘段和下降段的大气探测,自动实现了探测廓线的时空加密。利用ERA5再分析资料作为“真值”,利用往返平飘式探空模拟仿真系统构造了往返式探空模拟观测,基于CMA-MESO区域模式和3D-Var同化系统进行了观测系统模拟试验(Observing System Simulation Experiments,OSSEs)。数值试验结果表明:相比传统单次上升段探空观测,往返平飘式探空在全国组网的情况下,其增加的下降段模拟探空观测,能够有效提高CMA-MESO的降水预报技巧,不同降水量级的ETS评分提高约2%~5%,同时改进要素场(温、湿场和风场)的预报,改进率约为2%~5%。此外,典型天气个例分析结果表明,增加往返平飘式探空观测能够改善模式初值偏差,从而更准确地模拟降水分布。该文的研究结论为往返平飘式探空的未来科学布局和应用提供了理论支撑。
基金Supported by the US Environmental Modeling Center(EMC)Land Surface Modeling Project(granted to Youlong Xia)National Natural Science Foundation of China(51609111,granted to Baoqing Zhang)
文摘Since the North American and Global Land Data Assimilation Systems(NLDAS and GLDAS) were established in2004, significant progress has been made in development of regional and global LDASs. National, regional, projectbased, and global LDASs are widely developed across the world. This paper summarizes and overviews the development, current status, applications, challenges, and future prospects of these LDASs. We first introduce various regional and global LDASs including their development history and innovations, and then discuss the evaluation, validation, and applications(from numerical model prediction to water resources management) of these LDASs. More importantly, we document in detail some specific challenges that the LDASs are facing: quality of the in-situ observations, satellite retrievals, reanalysis data, surface meteorological forcing data, and soil and vegetation databases; land surface model physical process treatment and parameter calibration; land data assimilation difficulties; and spatial scale incompatibility problems. Finally, some prospects such as the use of land information system software, the unified global LDAS system with nesting concept and hyper-resolution, and uncertainty estimates for model structure,parameters, and forcing are discussed.