期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Verification of an operational ocean circulation-surface wave coupled forecasting system for the China's seas 被引量:5
1
作者 WANG Guansuo ZHAO Chang +2 位作者 XU Jiangling QIAO Fangli XIA Changshui 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第2期19-28,共10页
An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation sin... An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to(1/24)° from the global model with(1/2)°resolution. Besides, daily remote sensing sea surface temperature(SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth(MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores(SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value(more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean. 展开更多
关键词 operational forecast sea surface temperature mixed layer depth lead time subsurface temperature ocean circulation-surface wave coupled forecast system China's seas
下载PDF
Evaluating a satellite-based sea surface temperature by shipboard survey in the Northwest Indian Ocean
2
作者 YANG Guang HE Hailun +2 位作者 WANG Yuan HAN Xiqiu WANG Yejian 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第11期52-58,共7页
A summer-time shipboard meteorological survey is described in the Northwest Indian Ocean. Shipboard observations are used to evaluate a satellite-based sea surface temperature(SST), and then find the main factors th... A summer-time shipboard meteorological survey is described in the Northwest Indian Ocean. Shipboard observations are used to evaluate a satellite-based sea surface temperature(SST), and then find the main factors that are highly correlated with errors. Two satellite data, the first is remote sensing product of a microwave, which is a Tropical Rainfall Measuring Mission Microwave Imager(TMI), and the second is merged data from the microwave and infrared satellite as well as drifter observations, which is Operational Sea Surface Temperature and Sea Ice Analysis(OSTIA). The results reveal that the daily mean SST of merged data has much lower bias and root mean square error as compared with that from microwave products. Therefore the results support the necessary of the merging infrared and drifter SST with a microwave satellite for improving the quality of the SST. Furthermore, the correlation coefficient between an SST error and meteorological parameters, which include a wind speed, an air temperature, a relative humidity, an air pressure, and a visibility. The results show that the wind speed has the largest correlation coefficient with the TMI SST error. However, the air temperature is the most important factor to the OSTIA SST error. Meanwhile,the relative humidity shows the high correlation with the SST error for the OSTIA product. 展开更多
关键词 shipboard survey sea surface temperature Northwest Indian Ocean Tropical Rainfall Measuring Mission Microwave Imager Operational Sea surface Temperature and Sea Ice Analysis
下载PDF
多用途远程操作的海面运载器
3
作者 Nishan B Shetty Pruthviraj Umesh KV Gangadharan 《Journal of Marine Science and Application》 CSCD 2022年第3期219-227,共9页
Development of man-packable,versatile marine surface vehicle with ability to rescue a drowning victim and also capable of carrying mission specific sensor is explored.Design thinking methodology is implemented by usin... Development of man-packable,versatile marine surface vehicle with ability to rescue a drowning victim and also capable of carrying mission specific sensor is explored.Design thinking methodology is implemented by using existing equipment/platform with the addition of external attachment to make it a functional product.Iterative prototyping process with extensive testing to achieve user-centric solution.Individual prototypes and their possible sub-configurations with their integration and characteristics are studied and compared with numerical model,inferences obtained are utilised to improve for the next iteration.A novel hinge-clamp assembly enables this marine surface vehicle to operate in the event of an overturn,this phenomenon is further studied with the aid of a mathematical model(Pendulum in a fluid).This research project aims to demonstrate a multi-role unmanned surface vehicle. 展开更多
关键词 Multi-role platform Remotely operated ring buoy surface vehicle Unmanned marine surface vehicle Novel Hinge-Clamp Assembly Lifesaving equipment
下载PDF
Near-ground trajectory planning for UAVs via multi-resolution hybrid voxel-surfel map
4
作者 GAO TianYu WENG Rui +4 位作者 WU Tong ZHANG RuiXian HAN ChengZhe JI XiaoYu LIU Ming 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第5期1245-1254,共10页
This paper is concerned with trajectory planning problems for UAVs operating near ground.Most existing studies focus on solving the problem of collision-free trajectory planning between pre-defined path points,but ign... This paper is concerned with trajectory planning problems for UAVs operating near ground.Most existing studies focus on solving the problem of collision-free trajectory planning between pre-defined path points,but ignore the need of navigation method for UAVs working on specific operating surfaces in near-ground space.In this paper,a novel near-ground trajectory planning framework is proposed,where the hybrid voxel-surfel map is developed to model the environment with special attention to the uneven operating surface.To improve the frequency of updates,a probability-based surfel fusion method and a resolution adaptive adjustment method based on the fusion result are proposed in this paper.By using possibility information in the map,a path search method is established to generate the initial trajectory.The trajectory is then further optimized based on map gradient information to generate a final trajectory that tracks the specified operating surface according to the task requirements.Compared with existing methods,the multi-resolution hybrid voxel-surfel map proposed in this paper has advantages in terms of operating efficiency.A series of experiments in simulated and real scenarios validate the effectiveness of the proposed trajectory planning framework. 展开更多
关键词 near-ground trajectory planning hybrid voxel-surfel map probability-based surfel fusion operating surface tracking
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部