In order to explore an effective way to shorten treatment time and enhance the quality of treatment coating, AC micro-arc oxidation was conducted to treat the surface of AZ31 B deformation magnesium alloy in KF+KOH t...In order to explore an effective way to shorten treatment time and enhance the quality of treatment coating, AC micro-arc oxidation was conducted to treat the surface of AZ31 B deformation magnesium alloy in KF+KOH treatment solution. The infl uences of micro-arc oxidation parameters such as concentration of KF, concentration of KOH, output voltage of booster, temperature of treatment solution, and treatment time on treatment coating thickness were raveled out under different conditions. The structure and composition of treatment coating were determined, the growth mechanism of treatment coating was discussed, and the quick surface treatment technology for compact treatment coating with maximum thickness was developed. The experimental results show that: A maximum 33 μm-thick compact treatment coating, consisting of MgF2 and MgO mainly, can be formed on AZ31 B in 112 s under the conditions of 1 132 g/L KF, 382 g/L KOH, 66 V for output voltage of booster and 34 ℃ of treatment solution which were optimized by a genetic algorithm from the model established by artifi cial neural networks. There are no "crater-shaped" pores in this treatment coating as the heat shock resulting from the smooth variation of AC sinusoidal voltage is far smaller than that of the rigidly varied DC or pulse current. The treatment time is only one sixth of that adopted in the other surface treatment technology at best, principally for the reason that the coating can always grow irrespective of the electric potential of AZ31 B. This investigation lays a fi rm foundation for the extensive application of magnesium alloy.展开更多
Carbon Fiber (CF) reinforced polyetheretherketone (PEEK) composite is one of the most promising implant biomaterials used in orthopedics. In this article, unfilled PEEK and CF/PEEK specimens were prepared by vacuu...Carbon Fiber (CF) reinforced polyetheretherketone (PEEK) composite is one of the most promising implant biomaterials used in orthopedics. In this article, unfilled PEEK and CF/PEEK specimens were prepared by vacuum hot pressing method, and their tribological properties were evaluated by sliding against a cobalt-chromium-molybdenum (Co-Cr-Mo) alloy block. The influences of mass fraction of carbon fibers in CF/PEEK and the surface oxidation treatment of carbon fibers were explored. The results showed that the water contact angles on the surfaces of CF/PEEK specimens decreased, indicating that their surface wettability was improved. The hardness value of CF/PEEK was significantly improved, the friction coefficients of CF/PEEK were effectively reduced and its wear resistance was enhanced compared with unfilled PEEK. The leading effect on CF/PEEK tribological properties was the mass fraction of CF, followed by surface oxidation of CF, and the calf serum solution had better lubricity than that of saline and deionized water.展开更多
By surface mechanical attrition treatment(SMAT),a gradient nano structure(GNS) from the surface to center was generated in the AZ31 alloy sheet.The tribological behavior of AZ31 alloy with GNS was systematically i...By surface mechanical attrition treatment(SMAT),a gradient nano structure(GNS) from the surface to center was generated in the AZ31 alloy sheet.The tribological behavior of AZ31 alloy with GNS was systematically investigated by using dry sliding tests,a 3D surface profile-meter and a scanning electron microscope equipped with an energy-dispersive spectrometer.The experimental results indicate that the Mg alloy with GNS exhibits better wear resistance comparing to the as-received sample,which is associated to the alteration of wear mechanism at different sliding speeds.The Mg alloy with GNS presents the wear mechanism of the abrasive wear at 0.05 m/s and the oxidative wear at 0.5 m/s,respectively.Moreover,the GNS can effectively promote the reaction between the oxygen and worn surface,which leads to a compact oxidation layer at 0.5 m/s.The effect of oxidation layer on the wear resistance of the Mg alloy was also discussed.展开更多
基金Funded by the National Natural Science Foundation of China(No.50974010)the Natural Science Foundation of Beijing City,China(No.2102039)
文摘In order to explore an effective way to shorten treatment time and enhance the quality of treatment coating, AC micro-arc oxidation was conducted to treat the surface of AZ31 B deformation magnesium alloy in KF+KOH treatment solution. The infl uences of micro-arc oxidation parameters such as concentration of KF, concentration of KOH, output voltage of booster, temperature of treatment solution, and treatment time on treatment coating thickness were raveled out under different conditions. The structure and composition of treatment coating were determined, the growth mechanism of treatment coating was discussed, and the quick surface treatment technology for compact treatment coating with maximum thickness was developed. The experimental results show that: A maximum 33 μm-thick compact treatment coating, consisting of MgF2 and MgO mainly, can be formed on AZ31 B in 112 s under the conditions of 1 132 g/L KF, 382 g/L KOH, 66 V for output voltage of booster and 34 ℃ of treatment solution which were optimized by a genetic algorithm from the model established by artifi cial neural networks. There are no "crater-shaped" pores in this treatment coating as the heat shock resulting from the smooth variation of AC sinusoidal voltage is far smaller than that of the rigidly varied DC or pulse current. The treatment time is only one sixth of that adopted in the other surface treatment technology at best, principally for the reason that the coating can always grow irrespective of the electric potential of AZ31 B. This investigation lays a fi rm foundation for the extensive application of magnesium alloy.
基金The authors wish to express thanks to the financial support of National Natural Science Foundation of China (Nos. 51575278 and 51711530228), Science and Technology Project of Jiangsu Province (Nos. BY2016004-08 and BA2015054), the Funda- mental Research Funds for the Central Universities (No. 30910612203). A project funded by the Priority Aca- demic Program Development of Jiangsu Higher Educa- tion Institutions (PAPD). Finally, we also give thanks to the support from Jiangsu Key Laboratory of Advanced Micro/Nano Materials and Technologies.
文摘Carbon Fiber (CF) reinforced polyetheretherketone (PEEK) composite is one of the most promising implant biomaterials used in orthopedics. In this article, unfilled PEEK and CF/PEEK specimens were prepared by vacuum hot pressing method, and their tribological properties were evaluated by sliding against a cobalt-chromium-molybdenum (Co-Cr-Mo) alloy block. The influences of mass fraction of carbon fibers in CF/PEEK and the surface oxidation treatment of carbon fibers were explored. The results showed that the water contact angles on the surfaces of CF/PEEK specimens decreased, indicating that their surface wettability was improved. The hardness value of CF/PEEK was significantly improved, the friction coefficients of CF/PEEK were effectively reduced and its wear resistance was enhanced compared with unfilled PEEK. The leading effect on CF/PEEK tribological properties was the mass fraction of CF, followed by surface oxidation of CF, and the calf serum solution had better lubricity than that of saline and deionized water.
基金National Key Research and Development Program(No.2016YFB0701201)National Natural Science Foundation of China(Nos.51671101,51464034)+3 种基金Natural Science foundation of Jiangxi Province(No.20161ACB21003)the Scientific Research Foundation of the Education Department of Jiangxi Province(No.GJJ150010)the financial support provided by the Croucher Foundation(No.9500006)Hong Kong Collaborative Research Fund(CRF)Scheme(No.C4028-14G)
文摘By surface mechanical attrition treatment(SMAT),a gradient nano structure(GNS) from the surface to center was generated in the AZ31 alloy sheet.The tribological behavior of AZ31 alloy with GNS was systematically investigated by using dry sliding tests,a 3D surface profile-meter and a scanning electron microscope equipped with an energy-dispersive spectrometer.The experimental results indicate that the Mg alloy with GNS exhibits better wear resistance comparing to the as-received sample,which is associated to the alteration of wear mechanism at different sliding speeds.The Mg alloy with GNS presents the wear mechanism of the abrasive wear at 0.05 m/s and the oxidative wear at 0.5 m/s,respectively.Moreover,the GNS can effectively promote the reaction between the oxygen and worn surface,which leads to a compact oxidation layer at 0.5 m/s.The effect of oxidation layer on the wear resistance of the Mg alloy was also discussed.