Practical silicon photonic interconnects become possible nowadays after the realization of the practical silicon light sources, where the hybrid integrations of III-V semiconductors and silicon by bonding play a funda...Practical silicon photonic interconnects become possible nowadays after the realization of the practical silicon light sources, where the hybrid integrations of III-V semiconductors and silicon by bonding play a fundamental role. Photonic interconnects dissipate substantially less power and offer a significantly greater information bandwidth than those of electronic interconnects; however, one emerging problem is the size mismatch between photonic and electronic components when integrated on a chip. Therefore, surface plasmonic source with deeply sub-wavelength size is under intense investigation as the next generation Si-based light source for on-chip interconnects. In this paper, we shall review some of the latest achievements on this topic.展开更多
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 60877022 and 11174018).
文摘Practical silicon photonic interconnects become possible nowadays after the realization of the practical silicon light sources, where the hybrid integrations of III-V semiconductors and silicon by bonding play a fundamental role. Photonic interconnects dissipate substantially less power and offer a significantly greater information bandwidth than those of electronic interconnects; however, one emerging problem is the size mismatch between photonic and electronic components when integrated on a chip. Therefore, surface plasmonic source with deeply sub-wavelength size is under intense investigation as the next generation Si-based light source for on-chip interconnects. In this paper, we shall review some of the latest achievements on this topic.