MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical str...MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical strength,etc.This review begins by presenting MXenes,providing insights into their structural characteristics,synthesis methods,and surface functional groups.The review covers a thorough analysis of MXene surface properties,including surface chemistry and termination group impacts.The properties of MXenes are influenced by their synthesis,which can be fluorine-based or fluorinedependent.Fluorine-based synthesis techniques involve etching with fluorine-based reagents,mainly including HF or LiF/HCl,while fluorine-free methods include electrochemical etching,chemical vapor deposition(CVD),alkaline etching,Lewis acid-based etching,etc.These techniques result in the emergence of functional groups such as-F,-O,-OH,-Cl,etc.on the MXenes surface,depending on the synthesis method used.Properties of MXenes,such as electrical conductivity,electronic properties,catalytic activity,magnetic properties,mechanical strength,and chemical and thermal stability,are examined,and the role of functional groups in determining these properties is explored.The review delves into the diverse applications of MXenes,encompassing supercapacitors,battery materials,hydrogen storage,fuel cells,electromagnetic interference(EMI) shielding,pollutant removal,water purification,flexible electronics,sensors,additive manufacturing,catalysis,biomedical and healthcare fields,etc.Finally,this article outlines the challenges and opportunities in the current and future development of MXenes research,addressing various aspects such as synthesis scalability,etching challenges,and multifunctionality,and exploring novel applications.The review concludes with future prospects and conclusions envisioning the impact of MXenes on future technologies and innovation.展开更多
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal...As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.展开更多
Understanding and characterizing rough contact and wavy surfaces are essential for developing effective strategies to mitigate wear,optimize lubrication,and enhance the overall performance and durability of mechanical...Understanding and characterizing rough contact and wavy surfaces are essential for developing effective strategies to mitigate wear,optimize lubrication,and enhance the overall performance and durability of mechanical systems.The sliding friction contact problem between a thermoelectric(TE)half-plane and a rigid solid with a periodic wavy surface is the focus of this investigation.To simplify the problem,we utilize mixed boundary conditions,leading to a set of singular integral equations(SIEs)with the Hilbert kernels.The analytical solutions for the energy flux and electric current density are obtained by the variable transform method in the context of the electric and temperature field.The contact problem for the elastic field is transformed into the second-kind SIE and solved by the Jacobi polynomials.Notably,the smoothness of the wavy contact surface ensures that there are no singularities in the surface contact stress,and ensures that it remains free at the contact edge.Based on the plane strain theory of elasticity,the analysis primarily examines the correlation between the applied load and the effective contact area.The distribution of the normal stress on the surface with or without TE loads is discussed in detail for various friction coefficients.Furthermore,the obtained results indicate that the in-plane stress decreases behind the trailing edge,while it increases ahead of the trailing edge when subjected to TE loads.展开更多
According to the language of post-modern architecture which Charles Jencks proposed in the 1980s,form has been very crucial for architectural language expression.However,many suggestions also imply that the material w...According to the language of post-modern architecture which Charles Jencks proposed in the 1980s,form has been very crucial for architectural language expression.However,many suggestions also imply that the material which is deployed for building is also significant in the linguistic expression of architecture.Based on this consideration,the material use of architecture will also contain semiotic implications,whether for architects or for social consensus.How the material talks and what it says are two questions that need to be clarified.To answer these two questions,some empirical works in architecture will be examined to reveal the messages which could be delivered in architectural materials.Before this,semiotic debates in architecture will be reviewed.Then,two empirical works,one in the West and one in the East,will be considered particularly for their material deployments on the surface(façade).Since the architectural surface is the most tangible part of architecture in terms of material use,the surfaces of both projects will be discussed in detail with their implications and the atmospheres which the materials formulated and created.This paper will conclude with a consideration of the possible implications from these projects and also the different expressions of material use,which will help us to rethink the expression of the material use of architectural surface.展开更多
Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing perform...Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing performance,silver coated porous carbon(Ag@PC)is synthesized by one-step hydro-thermal synthesis process making use of fir as a biomass formwork.Phase compositions,morphological structure,and microwave absorption capability of the Ag@PC has been explored.Research results show that the metallic Ag was successfully reduced and the particles are evenly distributed inward the pores of the carbon formwork,which accelerates graphitization process of the amorphous carbon.The Ag@PC composite without adding polyvinyl pyrrolidone(PVP)exhibits higher dielectric constant and better EM wave dissipating capability.This is because the larger particles of Ag give rise to higher electric conductivity.After combing with frequency selective surface(FSS),the EM wave absorbing performance is further improved and the frequency region below-10 d B is located in8.20-11.75 GHz,and the minimal reflection loss value is-22.5 dB.This work indicates that incorporating metallic Ag particles and FSS provides a valid way to strengthen EM wave absorbing capacity of PC material.展开更多
Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of hi...Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices.Based on the ultra-high basal-plane thermal conductivity,graphene is an ideal candidate for preparing high-performance TIMs,preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM.However,the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory.In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved,another critical factor is the limited actual contact area leading to relatively high contact thermal resistance(20-30 K mm^(2) W^(−1))of the“solid-solid”mating interface formed by the vertical graphene and the rough chip/heat sink.To solve this common problem faced by vertically aligned graphene,in this work,we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces.Based on rational graphene orientation regulation in the middle tier,the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m^(−1) K^(−1).Additionally,we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a“liquid-solid”mating interface,significantly increasing the effective heat transfer area and giving a low contact thermal con-ductivity of 4-6 K mm^(2) W^(−1) under packaging conditions.This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management.展开更多
Active control of surface plasmon polaritons(SPPs)is highly desired for nanophotonics.Here we employ a phase change material Ge_(2)Sb_(2)Te_(5)(GST)to actively manipulate the propagating direction of SPPs at the telec...Active control of surface plasmon polaritons(SPPs)is highly desired for nanophotonics.Here we employ a phase change material Ge_(2)Sb_(2)Te_(5)(GST)to actively manipulate the propagating direction of SPPs at the telecom wavelength.By utilizing the phase transition-induced refractive index change of GST,coupled with interference effects,a nanoantenna pair containing GST is designed to realize switchable one-way launching of SPPs.Devices based on the nanoantenna pairs are proposed to manipulate SPPs,including the direction tuning of SPP beams,switchable SPP focusing,and switchable cosine–Gauss SPP beam generating.Our design can be employed in compact optical circuits and photonics integration.展开更多
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut...The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.展开更多
Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining...Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining technologies often struggle to achieve ultra-precision with DMMs resulting from poor surface quality and low processing efficiency.In recent years,field-assisted machining (FAM) technology has emerged as a new generation of machining technology based on innovative principles such as laser heating,tool vibration,magnetic magnetization,and plasma modification,providing a new solution for improving the machinability of DMMs.This technology not only addresses these limitations of traditional machining methods,but also has become a hot topic of research in the domain of ultra-precision machining of DMMs.Many new methods and principles have been introduced and investigated one after another,yet few studies have presented a comprehensive analysis and summarization.To fill this gap and understand the development trend of FAM,this study provides an important overview of FAM,covering different assisted machining methods,application effects,mechanism analysis,and equipment design.The current deficiencies and future challenges of FAM are summarized to lay the foundation for the further development of multi-field hybrid assisted and intelligent FAM technologies.展开更多
Triboelectric nanogenerators(TENGs),a type of promising micro/nano energy source,have been arousing tremendous research interest since their inception and have been the subject of many striking developments,including ...Triboelectric nanogenerators(TENGs),a type of promising micro/nano energy source,have been arousing tremendous research interest since their inception and have been the subject of many striking developments,including defining the fundamental physical mechanisms,expanding applications in mechanical to electric power conversion and self-powered sensors,etc.TENGs with a superior surface charge density at the interfaces of the electrodes and dielectrics are found to be crucial to the enhancement of the performance of the devices.Here,an overview of recent advances,including material optimization,circuit design,and strategy conjunction,in developing TENGs through surface charge enhancement is presented.In these topics,different strategies are retrospected in terms of charge transport and trapping mechanisms,technical merits,and limitations.Additionally,the current challenges in high-performance TENG research and the perspectives in this field are discussed.展开更多
Ammonium dinitramide(ADN),which has the advantages of high energy density,no halogen and low characteristic signal,is not only considered as a new high-energy oxidizer that is expected to replace the traditional oxidi...Ammonium dinitramide(ADN),which has the advantages of high energy density,no halogen and low characteristic signal,is not only considered as a new high-energy oxidizer that is expected to replace the traditional oxidizer ammonium perchlorate(AP)in solid propellants,but also a good performance explosive in itself.However,due to the strong hygroscopicity of ADN,its application in solid propellants and explosives is greatly limited.Solving the hygroscopicity of ADN is the key to realize the wide application of ADN.In this paper,we systematically review the research progress of anti-hygroscopic strategies of ADN coating.The surface coating methods are focusing on solvent volatilization,solvent-non-solvent,melt crystallization and atomic layer deposition technology.The characteristics of the different methods are compared and analyzed,and the basis for the classification and selection of the coating materials are introduced in detail.In addition,the feasibility of material for surface coating of ADN is evaluated by several compatibility analysis methods.It is highly expected that the liquid phase method(solvent volatilization method,solvent-non-solvent method)would be the promising method for future ADN coating because of its effective,safety and facile operation.Furthermore,polymer materials,are the preferred coating materials due to their high viscosity,easy adhesion,good anti-hygroscopic effect,and heat resistance,which make ADN weak hygroscopicity,less sensitive,easier to preserve and good compatibility.展开更多
Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between mar...Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between marine clay and structural materials with different roughness was studied in this paper by using 3D optical scanning tests,a modified direct shear device and numerical simulation.Relationships between the surface roughness of structures,water content and interface friction angle were presented by model tests.The increase of water contents decreased the interface friction angles.For interfaces with different roughness,the interface friction angles will be smaller than that of the soil when the water content exceeds a certain value.The roughness of the interface and the water content of the soil are mutually coupled to influence the coefficient of friction(COF).This paper proposed a Finite Element Method(FEM)to simulate the interface direct shear tests of structures with different roughness.The surface models with different roughness are established based on the structure data obtained by 3D scanning.The Coupled Eulerian-Lagrangian(CEL)approach was employed to analyse soils sheared by irregular surfaces.The interface behavior for interfaces with different roughness under cyclic shear stresses was analyzed by FEM.展开更多
This paper presents a topology optimization approach for the surface flows on variable design domains.Via this approach,the matching between the pattern of a surface flow and the 2-manifold used to define the pattern ...This paper presents a topology optimization approach for the surface flows on variable design domains.Via this approach,the matching between the pattern of a surface flow and the 2-manifold used to define the pattern can be optimized,where the 2-manifold is implicitly defined on another fixed 2-manifold named as the base manifold.The fiber bundle topology optimization approach is developed based on the description of the topological structure of the surface flow by using the differential geometry concept of the fiber bundle.The material distribution method is used to achieve the evolution of the pattern of the surface flow.The evolution of the implicit 2-manifold is realized via a homeomorphous map.The design variable of the pattern of the surface flow and that of the implicit 2-manifold are regularized by two sequentially implemented surface-PDE filters.The two surface-PDE filters are coupled,because they are defined on the implicit 2-manifold and base manifold,respectively.The surface Navier-Stokes equations,defined on the implicit 2-manifold,are used to describe the surface flow.The fiber bundle topology optimization problem is analyzed using the continuous adjoint method implemented on the first-order Sobolev space.Several numerical examples have been provided to demonstrate this approach,where the combination of the viscous dissipation and pressure drop is used as the design objective.展开更多
Surface modifications can introduce natural gradients or structural hierarchy into human-made microlattices,making them simultaneously strong and tough.Herein,we describe our investigations of the mechanical propertie...Surface modifications can introduce natural gradients or structural hierarchy into human-made microlattices,making them simultaneously strong and tough.Herein,we describe our investigations of the mechanical properties and the underlying mechanisms of additively manufactured nickel–chromium superalloy(IN625)microlattices after surface mechanical attrition treatment(SMAT).Our results demonstrated that SMAT increased the yielding strength of these microlattices by more than 64.71%and also triggered a transition in their mechanical behaviour.Two primary failure modes were distinguished:weak global deformation,and layer-by-layer collapse,with the latter enhanced by SMAT.The significantly improved mechanical performance was attributable to the ultrafine and hard graded-nanograin layer induced by SMAT,which effectively leveraged the material and structural effects.These results were further validated by finite element analysis.This work provides insight into collapse behaviour and should facilitate the design of ultralight yet buckling-resistant cellular materials.展开更多
The exact solutions for the propagation of Love waves in one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)nanoplates with surface effects are derived.An electro-elastic model is developed to investigate the...The exact solutions for the propagation of Love waves in one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)nanoplates with surface effects are derived.An electro-elastic model is developed to investigate the anti-plane strain problem of Love wave propagation.By introducing three shape functions,the wave equations and electric balance equations are decoupled into three uncorrelated problems.Satisfying the boundary conditions of the top surface on the covering layer,the interlayer interface,and the matrix,a dispersive equation with the influence of multi-physical field coupling is provided.A surface PQC model is developed to investigate the surface effects on the propagation behaviors of Love waves in quasicrystal(QC)multilayered structures with nanoscale thicknesses.A novel dispersion relation for the PQC structure is derived in an explicit closed form according to the non-classical mechanical and electric boundary conditions.Numerical examples are given to reveal the effects of the boundary conditions,stacking sequence,characteristic scale,and phason fluctuation characteristics on the dispersion curves of Love waves propagating in PQC nanoplates with surface effects.展开更多
Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the applicat...Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the application prospects of batteries.However,facing challenges,including phase transitions,ambient stability,side reactions,and irreversible anionic oxygen activity,the cycling performance of layered oxide cathode materials still cannot meet the application requirements.Therefore,this review proposes several strategies to address these challenges.First,bulk doping is introduced from three aspects:cationic single doping,anionic single doping,and multi-ion doping.Second,homogeneous surface coating and concentration gradient modification are reviewed.In addition,methods such as mixed structure design,particle engineering,high-entropy material construction,and integrated modification are proposed.Finally,a summary and outlook provide a new horizon for developing and modifying layered oxide cathode materials.展开更多
Hydrogen storage alloys(HSAs)are attracting widespread interest in the nuclear industry because of the generation of stable metal hydrides after tritium absorption,thus effectively preventing the leakage of radioactiv...Hydrogen storage alloys(HSAs)are attracting widespread interest in the nuclear industry because of the generation of stable metal hydrides after tritium absorption,thus effectively preventing the leakage of radioactive tritium.Commonly used HSAs in the hydrogen isotopes field are Zr2M(M=Co,Ni,Fe)alloys,metallic Pd,depleted U,and ZrCo alloy.Specifically,Zr2M(M=Co,Ni,Fe)alloys are considered promising tritium-getter materials,and metallic Pd is utilized to separate and purify hydrogen isotopes.Furthermore,depleted U and ZrCo alloy are well suited for storing and delivering hydrogen isotopes.Notably,all the aforementioned HSAs need to modulate their hydrogen storage properties for complex operating conditions.In this review,we present a comprehensive overview of the reported modification methods applied to the above alloys.Alloying is an effective amelioration method that mainly modulates the properties of HSAs by altering their local geometrical/electronic structures.Besides,microstructural modifications such as nano-sizing and nanopores have been used to increase the specific surface area and active sites of metallic Pd and ZrCo alloys for enhancing de-/hydrogenation kinetics.The combination of metallic Pd with support materials can significantly reduce the cost and enhance the pulverization resistance.Moreover,the poisoning resistance of ZrCo alloy is improved by constructing active surfaces with selective permeability.Overall,the review is constructive for better understanding the properties and mechanisms of hydrogen isotope storage alloys and provides effective guidance for future modification research.展开更多
The goal of this research is to identify the best set of process machining parameters for wire-EDM(Electrical Discharge Machining)cutting of hardened SKD11 steel when machining a curve profile.The multi-objective func...The goal of this research is to identify the best set of process machining parameters for wire-EDM(Electrical Discharge Machining)cutting of hardened SKD11 steel when machining a curve profile.The multi-objective function includes reducing surface roughness and increasing MRR(Material Removal Rate).The optimization process is prepared by using Taguchi method coupled Grey Relational Analysis.The obtained results revealed that Toff has the greatest influence on the average grey value(48.30%),followed by the influence of WF(Wire Feed,15.99%),VM(Cutting Voltage,9.33%),SV(Server Voltage,5.05%),Ton(Pulse on Time,1.81%),while SPD(Cutting Speed)has a negligible effect(0.89%).Moreover,using the optimal set of machining parameters generates in surface roughness of 1.25399mm and MRR of 26.5562 mm^(2)/min.The verification experiment and Anderson-Darling method demonstrate the validity of the proposed model,which can be utilized for estimating surface roughness and MRR.展开更多
Although great accomplishments of functional material synthesis have been achieved in sodium ion batteries(SIBs)recently,there are still numerous challenges and problems in preparing carbon-based materials with porous...Although great accomplishments of functional material synthesis have been achieved in sodium ion batteries(SIBs)recently,there are still numerous challenges and problems in preparing carbon-based materials with porous architectures and enough lattice distance for Na^+insertion.Herein we report a templated strategy to synthesize 3D porous graphene girds(PGGs)consisting of several stacking graphene structure with ultrahigh surface area and hierarchical connected structure by employing Ag nanoparticles(NPs).The Ag NPs will regenerate for decreasing the experimental cost,also in line with principles of green chemistry and environmentally friendly strategy.The PGGs obtain advanced specific capacity of160 m A h g^(-1)at current density of 50 m A h g^(-1).Moreover,112 mA h g^(-1)capacity can be gained at 1 A h g^(-1)during 1000 cycles.Due to their porous architecture,ultrahigh surface area and low amorphous graphited structure,PGGs electrode showed the excellent electrochemical performance in high rate capability.展开更多
A new double-yield-sarface (DYS) model was developed to characterize the strength and deformation behaviors of coarse granular materials (CGMs). Two kinds of deformation mechanisms, including the shear and compres...A new double-yield-sarface (DYS) model was developed to characterize the strength and deformation behaviors of coarse granular materials (CGMs). Two kinds of deformation mechanisms, including the shear and compressive plastic deformation, were taken into account in this model, These two deformation mechanisms were described by the shear and compressive yield functions, respectively. The Lode angle dependent formulations of proposed model were deduced by incorporating a 3D nonlinear unified failure criterion. Some comparisons were presented between the numerical predictions of proposed model and test data of true triaxial tests on the modeled rockfills. The model predictions are in good agreement with the test data and capture the strain hardening and plastic volumetric dilation of CGMs. These findings verify the reasonability of current DYS model, and indicate that this model is well suited to reproduce the stress-strain-volume change behavior of CGMs in general.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF-2020R1A6A1A03043435 and 2020R1A2C1099862)supported by the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korean Government(MOTIE)(P0012451,The Competency Development Program for Industry Specialist)。
文摘MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical strength,etc.This review begins by presenting MXenes,providing insights into their structural characteristics,synthesis methods,and surface functional groups.The review covers a thorough analysis of MXene surface properties,including surface chemistry and termination group impacts.The properties of MXenes are influenced by their synthesis,which can be fluorine-based or fluorinedependent.Fluorine-based synthesis techniques involve etching with fluorine-based reagents,mainly including HF or LiF/HCl,while fluorine-free methods include electrochemical etching,chemical vapor deposition(CVD),alkaline etching,Lewis acid-based etching,etc.These techniques result in the emergence of functional groups such as-F,-O,-OH,-Cl,etc.on the MXenes surface,depending on the synthesis method used.Properties of MXenes,such as electrical conductivity,electronic properties,catalytic activity,magnetic properties,mechanical strength,and chemical and thermal stability,are examined,and the role of functional groups in determining these properties is explored.The review delves into the diverse applications of MXenes,encompassing supercapacitors,battery materials,hydrogen storage,fuel cells,electromagnetic interference(EMI) shielding,pollutant removal,water purification,flexible electronics,sensors,additive manufacturing,catalysis,biomedical and healthcare fields,etc.Finally,this article outlines the challenges and opportunities in the current and future development of MXenes research,addressing various aspects such as synthesis scalability,etching challenges,and multifunctionality,and exploring novel applications.The review concludes with future prospects and conclusions envisioning the impact of MXenes on future technologies and innovation.
基金financially supported by the National Key R&D Program of China(No.2022YFE0121300)the National Natural Science Foundation of China(No.52374376)the Introduction Plan for High-end Foreign Experts(No.G2023105001L)。
文摘As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.
基金Project supported by the National Natural Science Foundation of China(Nos.12262033,12272269,12062021,and 12062022)Ningxia Hui Autonomous Region Science and Technology Innovation Leading Talent Training Project of China(No.2020GKLRLX01)the Natural Science Foundation of Ningxia of China(Nos.2023AAC02003 and 2022AAC03001)。
文摘Understanding and characterizing rough contact and wavy surfaces are essential for developing effective strategies to mitigate wear,optimize lubrication,and enhance the overall performance and durability of mechanical systems.The sliding friction contact problem between a thermoelectric(TE)half-plane and a rigid solid with a periodic wavy surface is the focus of this investigation.To simplify the problem,we utilize mixed boundary conditions,leading to a set of singular integral equations(SIEs)with the Hilbert kernels.The analytical solutions for the energy flux and electric current density are obtained by the variable transform method in the context of the electric and temperature field.The contact problem for the elastic field is transformed into the second-kind SIE and solved by the Jacobi polynomials.Notably,the smoothness of the wavy contact surface ensures that there are no singularities in the surface contact stress,and ensures that it remains free at the contact edge.Based on the plane strain theory of elasticity,the analysis primarily examines the correlation between the applied load and the effective contact area.The distribution of the normal stress on the surface with or without TE loads is discussed in detail for various friction coefficients.Furthermore,the obtained results indicate that the in-plane stress decreases behind the trailing edge,while it increases ahead of the trailing edge when subjected to TE loads.
文摘According to the language of post-modern architecture which Charles Jencks proposed in the 1980s,form has been very crucial for architectural language expression.However,many suggestions also imply that the material which is deployed for building is also significant in the linguistic expression of architecture.Based on this consideration,the material use of architecture will also contain semiotic implications,whether for architects or for social consensus.How the material talks and what it says are two questions that need to be clarified.To answer these two questions,some empirical works in architecture will be examined to reveal the messages which could be delivered in architectural materials.Before this,semiotic debates in architecture will be reviewed.Then,two empirical works,one in the West and one in the East,will be considered particularly for their material deployments on the surface(façade).Since the architectural surface is the most tangible part of architecture in terms of material use,the surfaces of both projects will be discussed in detail with their implications and the atmospheres which the materials formulated and created.This paper will conclude with a consideration of the possible implications from these projects and also the different expressions of material use,which will help us to rethink the expression of the material use of architectural surface.
基金supported by National Natural Science Foundation of China(No.52103361)Shaanxi University Youth Outstanding Talents Support Plan,Scientific and Technological Plan Project of Xi’an Beilin District(No.GX2143)。
文摘Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing performance,silver coated porous carbon(Ag@PC)is synthesized by one-step hydro-thermal synthesis process making use of fir as a biomass formwork.Phase compositions,morphological structure,and microwave absorption capability of the Ag@PC has been explored.Research results show that the metallic Ag was successfully reduced and the particles are evenly distributed inward the pores of the carbon formwork,which accelerates graphitization process of the amorphous carbon.The Ag@PC composite without adding polyvinyl pyrrolidone(PVP)exhibits higher dielectric constant and better EM wave dissipating capability.This is because the larger particles of Ag give rise to higher electric conductivity.After combing with frequency selective surface(FSS),the EM wave absorbing performance is further improved and the frequency region below-10 d B is located in8.20-11.75 GHz,and the minimal reflection loss value is-22.5 dB.This work indicates that incorporating metallic Ag particles and FSS provides a valid way to strengthen EM wave absorbing capacity of PC material.
基金flnancial support by the National Natural Science Foundation of China (52102055, 5227020331, 52075527)National Key R&D Program of China (2017YFB0406000 and 2017YFE0128600)+8 种基金the Project of the Chinese Academy of Sciences (XDC07030100, XDA22020602, ZDKYYQ20200001 and ZDRW-CN-2019-3)CAS Youth Innovation Promotion Association (2020301)Science and Technology Major Project of Ningbo (2021Z120, 2021Z115, 2022Z084, 2018B10046 and 2016S1002)the Natural Science Foundation of Ningbo (2017A610010)Foundation of State Key Laboratory of Solid lubrication (LSL-1912)China Postdoctoral Science Foundation (2020M681965, 2022M713243)National Key Laboratory of Science and Technology on Advanced Composites in Special Environments (6142905192806)K.C. Wong Education Foundation (GJTD-2019-13)the 3315 Program of Ningbo for financial support
文摘Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices.Based on the ultra-high basal-plane thermal conductivity,graphene is an ideal candidate for preparing high-performance TIMs,preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM.However,the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory.In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved,another critical factor is the limited actual contact area leading to relatively high contact thermal resistance(20-30 K mm^(2) W^(−1))of the“solid-solid”mating interface formed by the vertical graphene and the rough chip/heat sink.To solve this common problem faced by vertically aligned graphene,in this work,we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces.Based on rational graphene orientation regulation in the middle tier,the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m^(−1) K^(−1).Additionally,we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a“liquid-solid”mating interface,significantly increasing the effective heat transfer area and giving a low contact thermal con-ductivity of 4-6 K mm^(2) W^(−1) under packaging conditions.This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management.
文摘Active control of surface plasmon polaritons(SPPs)is highly desired for nanophotonics.Here we employ a phase change material Ge_(2)Sb_(2)Te_(5)(GST)to actively manipulate the propagating direction of SPPs at the telecom wavelength.By utilizing the phase transition-induced refractive index change of GST,coupled with interference effects,a nanoantenna pair containing GST is designed to realize switchable one-way launching of SPPs.Devices based on the nanoantenna pairs are proposed to manipulate SPPs,including the direction tuning of SPP beams,switchable SPP focusing,and switchable cosine–Gauss SPP beam generating.Our design can be employed in compact optical circuits and photonics integration.
基金supported by the National Key Research and Development Program of China(No.2019YFA0705601)the National Natural Science Foundation of China(No.U23A20122,52101267)the Key Science and Technology Special Project of Henan Province(No.201111311400).
文摘The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.
基金supported by the National Key Research and Development Project of China (Grant No.2023YFB3407200)the National Natural Science Foundation of China (Grant Nos.52225506,52375430,and 52188102)the Program for HUST Academic Frontier Youth Team (Grant No.2019QYTD12)。
文摘Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation,semiconductor,biomedicine,and other key fields due to their excellent material properties.However,traditional machining technologies often struggle to achieve ultra-precision with DMMs resulting from poor surface quality and low processing efficiency.In recent years,field-assisted machining (FAM) technology has emerged as a new generation of machining technology based on innovative principles such as laser heating,tool vibration,magnetic magnetization,and plasma modification,providing a new solution for improving the machinability of DMMs.This technology not only addresses these limitations of traditional machining methods,but also has become a hot topic of research in the domain of ultra-precision machining of DMMs.Many new methods and principles have been introduced and investigated one after another,yet few studies have presented a comprehensive analysis and summarization.To fill this gap and understand the development trend of FAM,this study provides an important overview of FAM,covering different assisted machining methods,application effects,mechanism analysis,and equipment design.The current deficiencies and future challenges of FAM are summarized to lay the foundation for the further development of multi-field hybrid assisted and intelligent FAM technologies.
基金supported by the National Key R&D Project from the Ministry of Science and Technology,China(2021YFA1201603)NSFC(52073032 and 52192611)the Fundamental Research Funds for the Central Universities.
文摘Triboelectric nanogenerators(TENGs),a type of promising micro/nano energy source,have been arousing tremendous research interest since their inception and have been the subject of many striking developments,including defining the fundamental physical mechanisms,expanding applications in mechanical to electric power conversion and self-powered sensors,etc.TENGs with a superior surface charge density at the interfaces of the electrodes and dielectrics are found to be crucial to the enhancement of the performance of the devices.Here,an overview of recent advances,including material optimization,circuit design,and strategy conjunction,in developing TENGs through surface charge enhancement is presented.In these topics,different strategies are retrospected in terms of charge transport and trapping mechanisms,technical merits,and limitations.Additionally,the current challenges in high-performance TENG research and the perspectives in this field are discussed.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.21805139,12102194 and 22005144)the Joint Funds of the National Natural Science Foundation of China(Grant No.U2141202)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.30921011203)the Young Elite Scientists Sponsorship Program by CAST(YESS Program,2021QNRC001)。
文摘Ammonium dinitramide(ADN),which has the advantages of high energy density,no halogen and low characteristic signal,is not only considered as a new high-energy oxidizer that is expected to replace the traditional oxidizer ammonium perchlorate(AP)in solid propellants,but also a good performance explosive in itself.However,due to the strong hygroscopicity of ADN,its application in solid propellants and explosives is greatly limited.Solving the hygroscopicity of ADN is the key to realize the wide application of ADN.In this paper,we systematically review the research progress of anti-hygroscopic strategies of ADN coating.The surface coating methods are focusing on solvent volatilization,solvent-non-solvent,melt crystallization and atomic layer deposition technology.The characteristics of the different methods are compared and analyzed,and the basis for the classification and selection of the coating materials are introduced in detail.In addition,the feasibility of material for surface coating of ADN is evaluated by several compatibility analysis methods.It is highly expected that the liquid phase method(solvent volatilization method,solvent-non-solvent method)would be the promising method for future ADN coating because of its effective,safety and facile operation.Furthermore,polymer materials,are the preferred coating materials due to their high viscosity,easy adhesion,good anti-hygroscopic effect,and heat resistance,which make ADN weak hygroscopicity,less sensitive,easier to preserve and good compatibility.
基金supported by a grant from the National Natural Science Foundations of China(No.52171282)supported by Taishan Scholars Program of Shandong Province,China(No.tsqn202306098)the Shandong Provincial Key Research and Development Plan,China(No.2021ZLGX04).
文摘Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between marine clay and structural materials with different roughness was studied in this paper by using 3D optical scanning tests,a modified direct shear device and numerical simulation.Relationships between the surface roughness of structures,water content and interface friction angle were presented by model tests.The increase of water contents decreased the interface friction angles.For interfaces with different roughness,the interface friction angles will be smaller than that of the soil when the water content exceeds a certain value.The roughness of the interface and the water content of the soil are mutually coupled to influence the coefficient of friction(COF).This paper proposed a Finite Element Method(FEM)to simulate the interface direct shear tests of structures with different roughness.The surface models with different roughness are established based on the structure data obtained by 3D scanning.The Coupled Eulerian-Lagrangian(CEL)approach was employed to analyse soils sheared by irregular surfaces.The interface behavior for interfaces with different roughness under cyclic shear stresses was analyzed by FEM.
基金Supported by National Natural Science Foundation of China (Grant No.51875545)Innovation Grant of Changchun Institute of Optics+2 种基金Fine Mechanics and Physics (CIOMP)CAS Project for Young Scientists in Basic Research of China (Grant No.YSBR-066)Science and Technology Development Program of Jilin Province of China (Grant No.SKL202302020)。
文摘This paper presents a topology optimization approach for the surface flows on variable design domains.Via this approach,the matching between the pattern of a surface flow and the 2-manifold used to define the pattern can be optimized,where the 2-manifold is implicitly defined on another fixed 2-manifold named as the base manifold.The fiber bundle topology optimization approach is developed based on the description of the topological structure of the surface flow by using the differential geometry concept of the fiber bundle.The material distribution method is used to achieve the evolution of the pattern of the surface flow.The evolution of the implicit 2-manifold is realized via a homeomorphous map.The design variable of the pattern of the surface flow and that of the implicit 2-manifold are regularized by two sequentially implemented surface-PDE filters.The two surface-PDE filters are coupled,because they are defined on the implicit 2-manifold and base manifold,respectively.The surface Navier-Stokes equations,defined on the implicit 2-manifold,are used to describe the surface flow.The fiber bundle topology optimization problem is analyzed using the continuous adjoint method implemented on the first-order Sobolev space.Several numerical examples have been provided to demonstrate this approach,where the combination of the viscous dissipation and pressure drop is used as the design objective.
基金support provided by Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project:HZQB-KCZYB-2020030the Hong Kong General Research Fund(GRF)Scheme(Ref:CityU 11216219)+2 种基金the Research Grants Council of Hong Kong(Project No:AoE/M-402/20)Shenzhen Science and Technology Program:JCYJ20220818101204010the Hong Kong Innovation and Technology Commission via the Hong Kong Branch of National Precious Metals Material Engineering Research Center.
文摘Surface modifications can introduce natural gradients or structural hierarchy into human-made microlattices,making them simultaneously strong and tough.Herein,we describe our investigations of the mechanical properties and the underlying mechanisms of additively manufactured nickel–chromium superalloy(IN625)microlattices after surface mechanical attrition treatment(SMAT).Our results demonstrated that SMAT increased the yielding strength of these microlattices by more than 64.71%and also triggered a transition in their mechanical behaviour.Two primary failure modes were distinguished:weak global deformation,and layer-by-layer collapse,with the latter enhanced by SMAT.The significantly improved mechanical performance was attributable to the ultrafine and hard graded-nanograin layer induced by SMAT,which effectively leveraged the material and structural effects.These results were further validated by finite element analysis.This work provides insight into collapse behaviour and should facilitate the design of ultralight yet buckling-resistant cellular materials.
基金Project supported by the National Natural Science Foundation of China(Nos.12272402 and11972365)the China Agricultural University Education Foundation(No.1101-2412001)。
文摘The exact solutions for the propagation of Love waves in one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)nanoplates with surface effects are derived.An electro-elastic model is developed to investigate the anti-plane strain problem of Love wave propagation.By introducing three shape functions,the wave equations and electric balance equations are decoupled into three uncorrelated problems.Satisfying the boundary conditions of the top surface on the covering layer,the interlayer interface,and the matrix,a dispersive equation with the influence of multi-physical field coupling is provided.A surface PQC model is developed to investigate the surface effects on the propagation behaviors of Love waves in quasicrystal(QC)multilayered structures with nanoscale thicknesses.A novel dispersion relation for the PQC structure is derived in an explicit closed form according to the non-classical mechanical and electric boundary conditions.Numerical examples are given to reveal the effects of the boundary conditions,stacking sequence,characteristic scale,and phason fluctuation characteristics on the dispersion curves of Love waves propagating in PQC nanoplates with surface effects.
基金the Fundamental Research Funds for the Central Universities,China(No.06500177)the National Natural Science Foundation of China Joint Fund Project(No.U1764255)。
文摘Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the application prospects of batteries.However,facing challenges,including phase transitions,ambient stability,side reactions,and irreversible anionic oxygen activity,the cycling performance of layered oxide cathode materials still cannot meet the application requirements.Therefore,this review proposes several strategies to address these challenges.First,bulk doping is introduced from three aspects:cationic single doping,anionic single doping,and multi-ion doping.Second,homogeneous surface coating and concentration gradient modification are reviewed.In addition,methods such as mixed structure design,particle engineering,high-entropy material construction,and integrated modification are proposed.Finally,a summary and outlook provide a new horizon for developing and modifying layered oxide cathode materials.
基金supported by the National Key Research and Development Program of China(2022YFE03170002)the National Natural Science Foundation of China(52071286 and U2030208)the Scientific Research Fund of Zhejiang Provincial Education Department(Y202353551).
文摘Hydrogen storage alloys(HSAs)are attracting widespread interest in the nuclear industry because of the generation of stable metal hydrides after tritium absorption,thus effectively preventing the leakage of radioactive tritium.Commonly used HSAs in the hydrogen isotopes field are Zr2M(M=Co,Ni,Fe)alloys,metallic Pd,depleted U,and ZrCo alloy.Specifically,Zr2M(M=Co,Ni,Fe)alloys are considered promising tritium-getter materials,and metallic Pd is utilized to separate and purify hydrogen isotopes.Furthermore,depleted U and ZrCo alloy are well suited for storing and delivering hydrogen isotopes.Notably,all the aforementioned HSAs need to modulate their hydrogen storage properties for complex operating conditions.In this review,we present a comprehensive overview of the reported modification methods applied to the above alloys.Alloying is an effective amelioration method that mainly modulates the properties of HSAs by altering their local geometrical/electronic structures.Besides,microstructural modifications such as nano-sizing and nanopores have been used to increase the specific surface area and active sites of metallic Pd and ZrCo alloys for enhancing de-/hydrogenation kinetics.The combination of metallic Pd with support materials can significantly reduce the cost and enhance the pulverization resistance.Moreover,the poisoning resistance of ZrCo alloy is improved by constructing active surfaces with selective permeability.Overall,the review is constructive for better understanding the properties and mechanisms of hydrogen isotope storage alloys and provides effective guidance for future modification research.
文摘The goal of this research is to identify the best set of process machining parameters for wire-EDM(Electrical Discharge Machining)cutting of hardened SKD11 steel when machining a curve profile.The multi-objective function includes reducing surface roughness and increasing MRR(Material Removal Rate).The optimization process is prepared by using Taguchi method coupled Grey Relational Analysis.The obtained results revealed that Toff has the greatest influence on the average grey value(48.30%),followed by the influence of WF(Wire Feed,15.99%),VM(Cutting Voltage,9.33%),SV(Server Voltage,5.05%),Ton(Pulse on Time,1.81%),while SPD(Cutting Speed)has a negligible effect(0.89%).Moreover,using the optimal set of machining parameters generates in surface roughness of 1.25399mm and MRR of 26.5562 mm^(2)/min.The verification experiment and Anderson-Darling method demonstrate the validity of the proposed model,which can be utilized for estimating surface roughness and MRR.
基金financially supported by MOST (Grant 2016YFA0202500)NSFC (51471089, 51501072)+1 种基金MOE (IRT13R30)111 Project (B12015)
文摘Although great accomplishments of functional material synthesis have been achieved in sodium ion batteries(SIBs)recently,there are still numerous challenges and problems in preparing carbon-based materials with porous architectures and enough lattice distance for Na^+insertion.Herein we report a templated strategy to synthesize 3D porous graphene girds(PGGs)consisting of several stacking graphene structure with ultrahigh surface area and hierarchical connected structure by employing Ag nanoparticles(NPs).The Ag NPs will regenerate for decreasing the experimental cost,also in line with principles of green chemistry and environmentally friendly strategy.The PGGs obtain advanced specific capacity of160 m A h g^(-1)at current density of 50 m A h g^(-1).Moreover,112 mA h g^(-1)capacity can be gained at 1 A h g^(-1)during 1000 cycles.Due to their porous architecture,ultrahigh surface area and low amorphous graphited structure,PGGs electrode showed the excellent electrochemical performance in high rate capability.
基金Project(50825901)supported by the National Natural Science Foundation for Distinguished Young Scholar of ChinaProject(2009492011)supported by State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute,China+1 种基金Project(GH200903)supported by Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering(Hohai University),ChinaProject(Y1090151)supported by Natural Science Foundation of Zhejiang Province,China
文摘A new double-yield-sarface (DYS) model was developed to characterize the strength and deformation behaviors of coarse granular materials (CGMs). Two kinds of deformation mechanisms, including the shear and compressive plastic deformation, were taken into account in this model, These two deformation mechanisms were described by the shear and compressive yield functions, respectively. The Lode angle dependent formulations of proposed model were deduced by incorporating a 3D nonlinear unified failure criterion. Some comparisons were presented between the numerical predictions of proposed model and test data of true triaxial tests on the modeled rockfills. The model predictions are in good agreement with the test data and capture the strain hardening and plastic volumetric dilation of CGMs. These findings verify the reasonability of current DYS model, and indicate that this model is well suited to reproduce the stress-strain-volume change behavior of CGMs in general.