CO2 laser rapid ablation mitigation(RAM)of fused silica has been used in high-power laser systems owing to its advantages of high efficiency,and ease of implementing batch and automated repairing.In order to study the...CO2 laser rapid ablation mitigation(RAM)of fused silica has been used in high-power laser systems owing to its advantages of high efficiency,and ease of implementing batch and automated repairing.In order to study the effect of repaired morphology of RAM on laser modulation and to improve laser damage threshold of optics,an finite element method(FEM)mathematical model of 351 nm laser irradiating fused silica optics is developed based on Maxwell electromagnetic field equations,to explore the 3D near-field light intensity distribution inside optics with repaired site on its surface.The influences of the cone angle and the size of the repaired site on incident laser modulation are studied as well.The results have shown that for the repaired site with a cone angle of 73.3°,the light intensity distribution has obvious three-dimensional characteristics.The relative light intensity on z-section has a circularly distribution,and the radius of the annular intensification zone increases with the decrease of z.While the distribution of maximum relative light intensity on y-section is parabolical with the increase of y.As the cone angle of the repaired site decreases,the effect of the repaired surface on light modulation becomes stronger,leading to a weak resistance to laser damage.Moreover,the large size repaired site would also reduce the laser damage threshold.Therefore,a repaired site with a larger cone angle and smaller size is preferred in practical CO2 laser repairing of surface damage.This work will provide theoretical guidance for the design of repaired surface topography,as well as the improvement of RAM process.展开更多
A geometric analysis technique for crystal growth and microstructure development in single-crystal welds had been previously developed.And the effect of welding conditions on the tendency of stray grains formation dur...A geometric analysis technique for crystal growth and microstructure development in single-crystal welds had been previously developed.And the effect of welding conditions on the tendency of stray grains formation during solidification was researched.In the present work,these analytical methods were further extended.Combined with an original vectorization method,a 3D Rosenthal solution was used to determine thermal conditions of the welds.Afterward,the dendrite growth orientation,the dendrite growth velocity and the thermal gradient along dendrite direction were calculated and lively plotted.Finally,the tendency of stray grains formation in the solidification front was forecasted and its distribution was presented with a 3D plot.The results indicate that substrate orientation has some impacts on the crystal growth pattern,dendrite growth velocity,distribution of thermal gradient and stray grain.Based on the research methods proposed in this work,any substrate crystallographic orientation can be studied,and predicted stray grains distribution can be visualized.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51775147 and 51705105)the Science Challenge Project of China(Grant No.TZ2016006-0503-01)+2 种基金the Young Elite Scientists Sponsorship Program by CAST(Grant No.2018QNRC001)the China Postdoctoral Science Foundation funded project(Grant Nos.2018T110288 and 2017M621260)the Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(Grant Nos.SKLRS201718A and SKLRS201803B).
文摘CO2 laser rapid ablation mitigation(RAM)of fused silica has been used in high-power laser systems owing to its advantages of high efficiency,and ease of implementing batch and automated repairing.In order to study the effect of repaired morphology of RAM on laser modulation and to improve laser damage threshold of optics,an finite element method(FEM)mathematical model of 351 nm laser irradiating fused silica optics is developed based on Maxwell electromagnetic field equations,to explore the 3D near-field light intensity distribution inside optics with repaired site on its surface.The influences of the cone angle and the size of the repaired site on incident laser modulation are studied as well.The results have shown that for the repaired site with a cone angle of 73.3°,the light intensity distribution has obvious three-dimensional characteristics.The relative light intensity on z-section has a circularly distribution,and the radius of the annular intensification zone increases with the decrease of z.While the distribution of maximum relative light intensity on y-section is parabolical with the increase of y.As the cone angle of the repaired site decreases,the effect of the repaired surface on light modulation becomes stronger,leading to a weak resistance to laser damage.Moreover,the large size repaired site would also reduce the laser damage threshold.Therefore,a repaired site with a larger cone angle and smaller size is preferred in practical CO2 laser repairing of surface damage.This work will provide theoretical guidance for the design of repaired surface topography,as well as the improvement of RAM process.
基金financially supported by the National Natural Science Foundation of China(Nos.51401210 and51271186)the National High Technology Research and Development Program of China(No.2014AA041701)
文摘A geometric analysis technique for crystal growth and microstructure development in single-crystal welds had been previously developed.And the effect of welding conditions on the tendency of stray grains formation during solidification was researched.In the present work,these analytical methods were further extended.Combined with an original vectorization method,a 3D Rosenthal solution was used to determine thermal conditions of the welds.Afterward,the dendrite growth orientation,the dendrite growth velocity and the thermal gradient along dendrite direction were calculated and lively plotted.Finally,the tendency of stray grains formation in the solidification front was forecasted and its distribution was presented with a 3D plot.The results indicate that substrate orientation has some impacts on the crystal growth pattern,dendrite growth velocity,distribution of thermal gradient and stray grain.Based on the research methods proposed in this work,any substrate crystallographic orientation can be studied,and predicted stray grains distribution can be visualized.