Limit analysis based on upper bound theorem into slope stability is presented. A rotational failure mechanism (log spiral) passing through the toe in an inclined slope is assumed for getting the critical height. The ...Limit analysis based on upper bound theorem into slope stability is presented. A rotational failure mechanism (log spiral) passing through the toe in an inclined slope is assumed for getting the critical height. The proposed limit analysis, although on the kinematical admissible velocity field, always satisfies the equilibrium of forces acting on sliced rigid blocks. And the most critical slip surface can be searched by random technique. A new solution scheme is also developed for rapid searching critical slip surface. It is also applicable to a variety of slope models. The method is shown having a high accuracy compared with limit solution for simple slope.展开更多
The Moving Particle Semi-implicit (MPS) method performs well in simulating violent free surface flow and hence becomes popular in the area of fluid flow simulation. However, the implementations of searching neighbouri...The Moving Particle Semi-implicit (MPS) method performs well in simulating violent free surface flow and hence becomes popular in the area of fluid flow simulation. However, the implementations of searching neighbouring particles and solving the large sparse matrix equations (Poisson-type equation) are very time-consuming. In order to utilize the tremendous power of parallel computation of Graphics Processing Units (GPU), this study has developed a GPU-based MPS model employing the Compute Unified Device Architecture (CUDA) on NVIDIA GTX 280. The efficient neighbourhood particle searching is done through an indirect method and the Poisson-type pressure equation is solved by the Bi-Conjugate Gradient (BiCG) method. Four different optimization levels for the present general parallel GPU-based MPS model are demonstrated. In addition, the elaborate optimization of GPU code is also discussed. A benchmark problem of dam-breaking flow is simulated using both codes of the present GPU-based MPS and the original CPU-based MPS. The comparisons between them show that the GPU-based MPS model outperforms 26 times the traditional CPU model.展开更多
文摘Limit analysis based on upper bound theorem into slope stability is presented. A rotational failure mechanism (log spiral) passing through the toe in an inclined slope is assumed for getting the critical height. The proposed limit analysis, although on the kinematical admissible velocity field, always satisfies the equilibrium of forces acting on sliced rigid blocks. And the most critical slip surface can be searched by random technique. A new solution scheme is also developed for rapid searching critical slip surface. It is also applicable to a variety of slope models. The method is shown having a high accuracy compared with limit solution for simple slope.
基金supported by the National Natural Science Foundation of China with Grant No. 10772040, 50921001 and 50909016The financial support from the Important National Science & Technology Specific Projects of China with Grant No. 2008ZX05026-02 is also appreciated
文摘The Moving Particle Semi-implicit (MPS) method performs well in simulating violent free surface flow and hence becomes popular in the area of fluid flow simulation. However, the implementations of searching neighbouring particles and solving the large sparse matrix equations (Poisson-type equation) are very time-consuming. In order to utilize the tremendous power of parallel computation of Graphics Processing Units (GPU), this study has developed a GPU-based MPS model employing the Compute Unified Device Architecture (CUDA) on NVIDIA GTX 280. The efficient neighbourhood particle searching is done through an indirect method and the Poisson-type pressure equation is solved by the Bi-Conjugate Gradient (BiCG) method. Four different optimization levels for the present general parallel GPU-based MPS model are demonstrated. In addition, the elaborate optimization of GPU code is also discussed. A benchmark problem of dam-breaking flow is simulated using both codes of the present GPU-based MPS and the original CPU-based MPS. The comparisons between them show that the GPU-based MPS model outperforms 26 times the traditional CPU model.