Surface tensions of slag addition Mg O and Si O2 based on conventional 70%CaF 2-30%Al2O3 and 60%Ca F2-20%Ca O-20%Al2O3(mass fraction) at 1300 °C, 1400 °C and 1500 °C were investigated. Influence mechani...Surface tensions of slag addition Mg O and Si O2 based on conventional 70%CaF 2-30%Al2O3 and 60%Ca F2-20%Ca O-20%Al2O3(mass fraction) at 1300 °C, 1400 °C and 1500 °C were investigated. Influence mechanism of Mg O and Si O2 on slag surface tension was also analyzed. Results indicate that surface tension decreases with the increase of Mg O content in the case of the Mg O content(mass fraction) less than 8%, however, when Mg O content(mass fraction) is from 8% to 30%, surface tension increases with the increase of Mg O content. When Si O2 content(mass fraction) is from 2% to 8%, surface tension decreases with the increase of Si O2 content. Additionally, the relationship between surface tension and optical basicity is a monotonically increasing linear function. Research findings can provide important reference for slag design and the study of slag-metal interfacial tension.展开更多
基金Project(51274266)supported by the National Natural Science Foundation of ChinaProject(N120502002)supported by the Fundamental Research Funds for Central Universities of ChinaProject(LR2013009)supported by the Program for Liaoning Excellent Talents in University,China
文摘Surface tensions of slag addition Mg O and Si O2 based on conventional 70%CaF 2-30%Al2O3 and 60%Ca F2-20%Ca O-20%Al2O3(mass fraction) at 1300 °C, 1400 °C and 1500 °C were investigated. Influence mechanism of Mg O and Si O2 on slag surface tension was also analyzed. Results indicate that surface tension decreases with the increase of Mg O content in the case of the Mg O content(mass fraction) less than 8%, however, when Mg O content(mass fraction) is from 8% to 30%, surface tension increases with the increase of Mg O content. When Si O2 content(mass fraction) is from 2% to 8%, surface tension decreases with the increase of Si O2 content. Additionally, the relationship between surface tension and optical basicity is a monotonically increasing linear function. Research findings can provide important reference for slag design and the study of slag-metal interfacial tension.