High-precision seismic imaging is the core task of seismic exploration,guaranteeing the accuracy of geophysical and geological interpretation.With the development of seismic exploration,the targets become more and mor...High-precision seismic imaging is the core task of seismic exploration,guaranteeing the accuracy of geophysical and geological interpretation.With the development of seismic exploration,the targets become more and more complex.Imaging on complex media such as subsalt,small-scale,steeply dipping and surface topography structures brings a great challenge to imaging techniques.Therefore,the seismic imaging methods range from stacking-to migration-to inversion-based imaging,and the imaging accuracy is becoming increasingly high.This review paper includes:summarizing the development of the seismic imaging;overviewing the principles of three typical imaging methods,including common reflection surface(CRS)stack,migration-based Gaussian-beam migration(GBM)and reverse-time migration(RTM),and inversion-based least-squares reverse-time migration(LSRTM);analyzing the imaging capability of GBM,RTM and LSRTM to the special structures on three typical models and a land data set;outlooking the future perspectives of imaging methods.The main challenge of seismic imaging is to produce high-precision images for low-quality data,extremely deep reservoirs,and dual-complex structures.展开更多
基金supported by seismic wave propagation and imaging(SWPI)group of China University of Petroleum(East China)supported by National Natural Science Foundation of China(42174138,41904101,42074133)+3 种基金Natural Science Foundation of Shandong Province(ZR2019QD004)Funds for the Central Universities(19CX02010A)the Major Scientific and Technological Projects of CNPC(ZD 2019183-003)Talent introduction fund of China University of Petroleum(East China)(20180041)。
文摘High-precision seismic imaging is the core task of seismic exploration,guaranteeing the accuracy of geophysical and geological interpretation.With the development of seismic exploration,the targets become more and more complex.Imaging on complex media such as subsalt,small-scale,steeply dipping and surface topography structures brings a great challenge to imaging techniques.Therefore,the seismic imaging methods range from stacking-to migration-to inversion-based imaging,and the imaging accuracy is becoming increasingly high.This review paper includes:summarizing the development of the seismic imaging;overviewing the principles of three typical imaging methods,including common reflection surface(CRS)stack,migration-based Gaussian-beam migration(GBM)and reverse-time migration(RTM),and inversion-based least-squares reverse-time migration(LSRTM);analyzing the imaging capability of GBM,RTM and LSRTM to the special structures on three typical models and a land data set;outlooking the future perspectives of imaging methods.The main challenge of seismic imaging is to produce high-precision images for low-quality data,extremely deep reservoirs,and dual-complex structures.