期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Facile electrochemical surface-alloying and etching of Au wires to enable high-performance substrates for surface enhanced Raman scattering
1
作者 Yawen Zhan Guobin Zhang +8 位作者 Junda Shen Binbin Zhou Chenghao Zhao Junmei Guo Ming Wen Zhilong Tan Lirong Zheng Jian Lu Yang Yang Li 《Nano Materials Science》 EI CAS CSCD 2024年第3期305-311,共7页
Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with... Surface-enhanced Raman Spectroscopy(SERS)is a nondestructive technique for rapid detection of analytes even at the single-molecule level.However,highly sensitive and reliable SERS substrates are mostly fabricated with complex nanofabrication techniques,greatly restricting their practical applications.A convenient electrochemical method for transforming the surface of commercial gold wires/foils into silver-alloyed nanostructures is demonstrated in this report.Au substrates are treated with repetitive anodic and cathodic bias in an electrolyte of thiourea,in a one-pot one-step manner.X-rays absorption fine structure(XAFS)spectroscopy confirms that the AuAg alloy is induced at the surface.The unique AuAg alloyed surface nanostructures are particularly advantageous when served as SERS substrates,enabling a remarkably sensitive detection of Rhodamine B(a detection limit of 10^(-14)M,and uniform strong response throughout the substrates at 10^(-12)M). 展开更多
关键词 ELECTRODEPOSITION DEALLOYING surface-alloyed Noble metals surface enhanced Raman spectroscopy substrates
下载PDF
Diagnosis of gas phase near the substrate surface in diamond film deposition by high-power DC arc plasma jet CVD
2
作者 Zuyuan Zhou Guangchao Chen +2 位作者 Bin Li Weizhong Tang Fanxiu Lv 《Journal of University of Science and Technology Beijing》 CSCD 2007年第4期365-368,共4页
Optical emission spectroscopy (OES) was used to study the gas phase composition near the substrate surface during diamond deposition by high-power DC arc plasma jet chemical vapor deposition (CVD). C2 radical was ... Optical emission spectroscopy (OES) was used to study the gas phase composition near the substrate surface during diamond deposition by high-power DC arc plasma jet chemical vapor deposition (CVD). C2 radical was determined as the main carbon radical in this plasma atmosphere. The deposition parameters, such as substrate temperature, anode-substrate distance, methane concentration, and gas flow rate, were inspected to find out the influence on the gas phase. A strong dependence of the concentrations and distribution of radicals on substrate temperature was confirmed by the design of experiments (DOE). An explanation for this dependence could be that radicals near the substrate surface may have additional ionization or dissociation and also have recombination, or are consumed on the substrate surface where chemical reactions occur. 展开更多
关键词 gas phase diamond film optical emission spectroscopy substrate surface high power DC arc plasma jet chemical vapor deposition
下载PDF
Fabrication of cost-effective, highly reproducible large area arrays of nanotriangular pillars for surface enhanced Raman scattering substrates 被引量:2
3
作者 Kudilatt Hasna Aldrin Antony +2 位作者 Joaquim Puigdollers Kumaran Rajeev Kumar Madambi Kunjukuttan Jayaraj 《Nano Research》 SCIE EI CAS CSCD 2016年第10期3075-3083,共9页
Development of cost-effective, highly reproducible non-conventional fabrication techniques for anisotropic metal nanostructures is essential to realizing potential applications of plasmonic devices, photonic devices, ... Development of cost-effective, highly reproducible non-conventional fabrication techniques for anisotropic metal nanostructures is essential to realizing potential applications of plasmonic devices, photonic devices, and surface enhanced Raman scattering (SERS) phenomenon based sensors. This report highlights the fabrication of nanotriangle arrays via nanoimprinting to overcome difficulties in creating large-area SERS active substrates with uniform, reproducible Raman signals. Electron beam lithography of anisotropic nanostructures, formation of arrays of nanotriangles in silicon and the transfer of triangular shapes to polymethylmethacrylate (PMMA) sheets via nanoimprinting have not been reported elsewhere. The reuse of silicon masters offers potential for production of low cost SERS substrates. The SERS activity and reproducibility of nanotriangles are illustrated and a consistent average enhancement factor of up to -2.9 × 1011, which is the highest value reported for a patterned SERS substrate, is achieved. 展开更多
关键词 metal nanostructures localized surface plasmon resonance (LSPR) surface enhanced Ramanscattering (SERS) substrate enhancement factor
原文传递
Influence of substrate process tolerances on transmission characteristics of frequency-selective surface 被引量:6
4
作者 张鹤 卢俊 +1 位作者 孙贯成 肖洪亮 《Chinese Optics Letters》 SCIE EI CAS CSCD 2008年第1期54-56,共3页
Frequency-selective surface (FSS) is a two-dimensional periodic structure consisting of a dielectric substrate and the metal units (or apertures) arranged periodically on it. When manufacturing the substrate, its ... Frequency-selective surface (FSS) is a two-dimensional periodic structure consisting of a dielectric substrate and the metal units (or apertures) arranged periodically on it. When manufacturing the substrate, its thickness and dielectric constant suffer process tolerances. This may induce the center frequency of the FSS to shift, and consequently influence its characteristics. In this paper, a bandpass FSS structure is designed. The units are the Jerusalem crosses arranged squarely. The mode-matching technique is used for simulation. The influence of the tolerances of the substrate's thickness and dielectric constant on the center frequency is analyzed. Results show that the tolerances of thickness and dielectric constant have different influences on the center frequency of the FSS. It is necessary to ensure the process tolerance of the dielectric constant in the design and manufacturing of the substrate in order to stabilize the center frequency. 展开更多
关键词 FSS Influence of substrate process tolerances on transmission characteristics of frequency-selective surface
原文传递
Graphene surface plasmon polaritons transport on curved substrates 被引量:3
5
作者 Ting-Hui Xiao Lin Gan Zhi-Yuan Li 《Photonics Research》 SCIE EI 2015年第6期300-307,共8页
We theoretically investigate the transport property of graphene surface plasmon polaritons(GSPPs) on curved graphene substrates. The dispersion relationship, propagation length, and field confinement are calculated by... We theoretically investigate the transport property of graphene surface plasmon polaritons(GSPPs) on curved graphene substrates. The dispersion relationship, propagation length, and field confinement are calculated by an analytical method and compared with those on planar substrates. Based on our theory, the bend of graphene nearly does not affect the property of GSPPs except for an extremely small shift to the lower frequency for the same effective mode index. The field distributions and the eigenfrequencies of GSPPs on planar and cylindrical substrates are calculated by the finite element method, which validates our theoretical analysis. Moreover, three types of graphene-guided optical interconnections of GSPPs, namely, planar to curved graphene film, curved to planar graphene film, and curved to curved graphene film, are proposed and examined in detail. The theoretical results show that the GSPPs propagation on curved graphene substrates and interconnections will not induce any additional losses if the phase-matching condition is satisfied. Additionally, the extreme tiny size of curved graphene for interconnection at a certain spectra range is predicted by our theory and validated by the simulation of 90° turning of GSPPs. The bending effect on the property of GSPPs is systematically analyzed and identified. Our studies would be helpful to instruct design of plasmonic devices involving curved GSPPs, such as nanophotoniccircuits, flexible plasmonic, and biocompatible devices. 展开更多
关键词 Graphene surface plasmon polaritons transport on curved substrates
原文传递
Facile fabrication of a single-particle platform with high throughput via substrate surface potential regulated large-spacing nanoparticle assembly
6
作者 Dong Li Yinghui Sun +5 位作者 Yawen Wang Yuanlan Liu Bo Zhao Wenkai Liang Heng Gao Lin Jiang 《Nano Research》 SCIE EI CSCD 2022年第7期6713-6720,共8页
Nanodevices based on the single nanoparticle represent innovative and promising technology,which could satisfy the increasing requirements of high accuracy,low energy consumption,and small volume.However,the acquisiti... Nanodevices based on the single nanoparticle represent innovative and promising technology,which could satisfy the increasing requirements of high accuracy,low energy consumption,and small volume.However,the acquisition of single particles involves complex operation,and the corresponding nanodevices display low-throughput.Herein,we present a facile strategy to construct a single-particle platform with high throughput via substrate surface potential modulated a large-area and large-spacing nanoparticle assembly.Such platform not only avoids optic interference but also ensures the independent electrically conductive channel of single particle on substrate.Therefore,the dark-field microscopic imaging and single-particle scattering signals collecting of individual nanoparticles with plasmonic effect are satisfactory achieved based on the platform,and the first success in the fabrication of nano-organic-light-emitting-diodes with single nanoparticle resolution in nanoscale.All the results indicate that the strategy may find promising applications in the in situ single-particle research such as single-particle detection,singleparticle catalysis,and optoelectronics. 展开更多
关键词 single particle NANODEVICES electrostatic self-assembly substrate surface potential
原文传递
Longitudinal leaky surface acoustic wave on Y-rotated cut quartz substrates
7
作者 ZHOU Ran TONG Xiaojun QIU Gang ZHANG De(Institute of Acoustics, State Key Laboratory of Modern Acoustics, Nanjing University Nanjing 210093) 《Chinese Journal of Acoustics》 2003年第4期339-345,共7页
The properties of Quasi-longitudinal leaky surface acoustic wave(QLLSAW) on Y-rotated cut quartz substrates were presented. The phase velocity of QLLSAW on the quartz substrate along some orientations can be up from 6... The properties of Quasi-longitudinal leaky surface acoustic wave(QLLSAW) on Y-rotated cut quartz substrates were presented. The phase velocity of QLLSAW on the quartz substrate along some orientations can be up from 6200 m/s to 7100 m/s, circa 100% above that of regular SAW. Both theoretical and experimental results show that QLLSAW propagating along some promising orientations for SAW devices are of small power flow angle and low tem-perature coefficient, for example, along the Euler angle (0°155.25°? 42°?, the measurements of phase velocity and temperature coefficient of delay of QLLSAW are 6201 m/s and 12.9 ppm/℃. The experimental results show that QLLSAW had little absorption by liquid loading on the substrate surface, which proved that the direction of particle motion is the same as wave vector and parallel to the surface of the substrates, i.e., the wave is of the properties of longitudinal wave. 展开更多
关键词 WAVE Longitudinal leaky surface acoustic wave on Y-rotated cut quartz substrates on IS of that
原文传递
Bestow metal foams with nanostructured surfaces via a convenient electrochemical method for improved device performance 被引量:1
8
作者 Yawen Zhan Shanshan Zeng +4 位作者 Haidong Bian Zhe Li Zhengtao Xu Jian LU Yang Yang Li 《Nano Research》 SCIE EI CAS CSCD 2016年第8期2364-2371,共8页
Metal foams have been intensively studied as three-dimensional (3-D) bulk mass-support for various applications because of their high conductivities and attractive mechanical properties. However, the relatively low ... Metal foams have been intensively studied as three-dimensional (3-D) bulk mass-support for various applications because of their high conductivities and attractive mechanical properties. However, the relatively low surface area of conventional metal foams largely limits their performance in applications such as charge storage. Here, we present a convenient electrochemical method for addressing this problem using Cu foams as an example. High surface area Cu foams are fabricated in a one-pot one-step manner by repetitive electrodeposition and dealloying treatments. The obtained Cu foams exhibit greatly improved performance for different applications like surface enhanced Raman spectroscopy (SERS) substrates and 3-D bulk supercapacitor electrodes. 展开更多
关键词 ELECTRODEPOSITION DEALLOYING metal foams surface enhanced Ramanspectroscopy substrates SUPERCAPACITORS
原文传递
Investigation of the Heterogeneous Nucleation on Fractal Surfaces 被引量:1
9
作者 Meng Wang Ying Zhang Haoyong Zheng Xin Lin Weidong Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第12期1169-1174,共6页
关键词 Solidification Nucleation Supersaturated solutions substrate surface structure
原文传递
Multiple plasmon couplings in 3D hybrid Au-nanoparticles-decorated Ag nanocone arrays boosting highly sensitive surface enhanced Raman scattering
10
作者 Zewen Zuo Lianye Sun +4 位作者 Yongbin Guo Lujun Zhang Junhu Li Kuanguo Li Guanglei Cui 《Nano Research》 SCIE EI CSCD 2022年第1期317-325,共9页
Plasmon coupling is an essential strategy to realize strong local electromagnetic(EM)field which is crucial for high-performance plasmonic devices.In this work,multiple plasmon couplings are demonstrated in three-dime... Plasmon coupling is an essential strategy to realize strong local electromagnetic(EM)field which is crucial for high-performance plasmonic devices.In this work,multiple plasmon couplings are demonstrated in three-dimensional(3D)hybrid plasmonic systems composed of polydimethylsiloxane-supported ordered silver nanocone(AgNC)arrays decorated with high-density gold nanoparticles(AuNPs)which are fabricated by a template-assisted physical vapor deposition process.Strong interparticle coupling,particle-film coupling,inter-cone coupling,and particle-cone coupling are revealed by numerical simulations in such composite nanostructures,which produce intense and high-density EM hot spots,boosting highly sensitive and reproducible surface enhanced Raman scattering(SERS)detection with an enhancement factor of-1.74×10^(8).Furthermore,a linear correlation between logarithmic Raman intensity and logarithmic concentration of probe molecules is observed in a large concentration range.These results offer new ideas to develop novel plasmonic devices,and provide alternative strategy to realize flexible and high-performance SERS sensors for trace molecule detection and quantitative analysis. 展开更多
关键词 multiple plasmon coupling electric field enhancement nanocone array three-dimensional hybrid surface enhanced Raman scattering(SERS)substrate
原文传递
Spray Pyrolysis Deposition of ZnO Thin Films from Zinc Chloride Precursor Solution at Different Substrate Temperatures
11
作者 Fahimeh Zahedi Reza Sabet Dariani Seyed Mohammad Rozati 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第1期110-114,共5页
ZnO films were prepared at different substrate temperatures through spraying pyrolysis deposition of zinc chloride precursor onto glass substrate. Substrate temperature affects surface morphology of films and therefor... ZnO films were prepared at different substrate temperatures through spraying pyrolysis deposition of zinc chloride precursor onto glass substrate. Substrate temperature affects surface morphology of films and therefore their optical and electrical properties. All films are polycrystalline with Wurtzite crystal structure and preferentially grow along c-axis direction. Formation of ZnO rods start at about 500 °C. The diameter and length of rods deposited at 500 °C are350–500 and 550–700 nm, respectively. By increasing substrate temperature, film becomes more coverage and diameter of the rods reduces to 250–300 nm but their length increases to 1,000–1,200 nm, respectively. Optical transmission in visible region decreases with increasing substrate temperature. An ultraviolet emission and two visible emissions at 2.82 and2.37 eV are observed for photoluminescence spectra at room temperature. The resistivity of ZnO films increases with increasing substrate temperature due to surface morphology. 展开更多
关键词 ZnO Rods Spray pyrolysis substrate temperature surface morphology
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部