The surface properties of catalysts determine the intrinsic activity and adaptability.Ruthenium is regarded as a potential candidate to substitute platinum for water electrolysis due to the low cost and analogous elec...The surface properties of catalysts determine the intrinsic activity and adaptability.Ruthenium is regarded as a potential candidate to substitute platinum for water electrolysis due to the low cost and analogous electronic structures while it suffers from severe dissolution and stability problems.Herein,the modification of Ru/C with atomically dispersed cobalt atoms is achieved via a simple thermal doping method.The newly formed amorphous shell with Ru-Co sites on the Ru/C catalyst improved the hydrogen evolution reaction activity and stability significantly.Impressively,the obtained Co1Ru@Ru/CN_(x)catalyst exhibited an overpotential as low as 30 mV at 10 mA cm^(-2)in an alkaline medium,which is among the best HER catalysts reported so far.The oxygen oxophile Co prevents the fast oxidation and dissolution of Ru species,ensuring outstanding long-term durability up to 70 h.Theoretical calculations reveal that the Ru-Co coordination acts as a more active site for water dissociation than the Ru-Ru.Meanwhile,the"Ru-Co shell/Ru core"structures show high adaptability for the reaction conditions.This simple doping strategy offers prospects for scalable preparation of highly active electrocatalysts.展开更多
Taking bump-type gas foil bearings as the research object,a deformation model of bump foil and a thin-plate finite element model of top foil were proposed.By solving Reynolds equation and energy equation,the pressure ...Taking bump-type gas foil bearings as the research object,a deformation model of bump foil and a thin-plate finite element model of top foil were proposed.By solving Reynolds equation and energy equation,the pressure distribution and the temperature distribution of gas films in foil bearings were obtained.Further,a numerical method for calculating the lubrication performance of gas foil bearings with considering the surface roughness was proposed.With a specific example,effects of the surface roughness on the bearing lubrication performance were parametrically studied.The results indicate that rougher journal surface can lead to larger fluctuation of the lubrication performance,while surface roughness of top foil has few effects on the fluctuation.Moreover,the mean values of performance parameters almost remain constant at different values of surface roughness.展开更多
Corrugated surface microparticles comprising levofloxacin(LEV),chitosan and organic acid were prepared using the 3-combo spray drying method.The amount and the boiling point of the organic acid affected the degree of ...Corrugated surface microparticles comprising levofloxacin(LEV),chitosan and organic acid were prepared using the 3-combo spray drying method.The amount and the boiling point of the organic acid affected the degree of roughness.In this study,we tried to improve the aerodynamic performance and increase aerosolization by corrugated surface microparticle for lung drug delivery efficiency as dry powder inhaler.HMP175 L20 prepared with 175 mmol propionic acid solution was corrugated more than HMF175 L20 prepared with 175 mmol formic acid solution.The ACI and PIV results showed a significant increase in aerodynamic performance of corrugated microparticles.The FPF value of HMP175 L20 was 41.3%±3.9%compared with 25.6%±7.7%of HMF175 L20.Corrugated microparticles also showed better aerosolization,decreased x-axial velocity,and variable angle.Rapid dissolution of drug formulationswas observed in vivo.Lowdoses administered to the lungs achieved higher LEV concentrations in the lung fluid than high doses administered orally.Surface modification in the polymer-based formulation was achieved by controlling the evaporation rate and improving the inhalation efficiency of DPIs.展开更多
In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtur...In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtures.First of all,the basic performance parameters of sinocalamus affinis fiber,phyllostachys pubescens fiber,green bamboo fiber were tested and analyzed,and the optimal content and length were put forward.Then,the mix ratio design of the bamboo fiber modified asphalt mixture was further designed through the response surface method,and was verified the rationality of the mix ratio.Finally,the mixture specimens were made according to the experimental design mix ratio,and the high temperature,low temperature performance and moisture susceptibility of the bamboo fiber modified mixtures asphalt were tested.The results showed that the high temperature performance,low temperature performance and moisture susceptibility of bamboo fiber modified asphalt mixtures were improved compared with the performance of SBS modified asphalt mixture.When the length of bamboo fiber is 7.25 mm and the content of 0.22%,the road performance of the asphalt mixture was optimal.Consequentially,the decomposition of bamboo residue into bamboo fiber and its application in asphalt pavement can improve the reuse of bamboo waste,with remarkable environmental benefits and great promotion value.展开更多
Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the applicat...Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the application prospects of batteries.However,facing challenges,including phase transitions,ambient stability,side reactions,and irreversible anionic oxygen activity,the cycling performance of layered oxide cathode materials still cannot meet the application requirements.Therefore,this review proposes several strategies to address these challenges.First,bulk doping is introduced from three aspects:cationic single doping,anionic single doping,and multi-ion doping.Second,homogeneous surface coating and concentration gradient modification are reviewed.In addition,methods such as mixed structure design,particle engineering,high-entropy material construction,and integrated modification are proposed.Finally,a summary and outlook provide a new horizon for developing and modifying layered oxide cathode materials.展开更多
Lithium-ion batteries (LIB) have received substantial attention in the last 10 years,as they offer great promise as power sources that can lead to the electric vehicle (EV) revolution in the next 5 years.Since the cat...Lithium-ion batteries (LIB) have received substantial attention in the last 10 years,as they offer great promise as power sources that can lead to the electric vehicle (EV) revolution in the next 5 years.Since the cathode serves as a key component in LIB,its properties significantly affect the performance of the whole system.Recently,the cathode surface modification based on coating technique has been widely employed to enhance the electrochemical performances by improving the material conductivity,stabilising the physical structure of materials,as well as preventing the reactions between the electrode and electrolyte.In this work,we reviewed the present of a number of promising cathode materials for Li-ion batteries.After that,we summarized the very recent research progress focusing on the surface coating strategies,mainly including the coating materials,the coating technologies,as well as the corresponding working mechanisms for cathodes.At last,the challenges faced and future guidelines for optimizing cathode materials are discussed.In this study,we propose that the structure of cathode is a crucial factor during the selection of coating materials and technologies.展开更多
The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimpl...The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimples on steel surfaces. Dimples with the diameter of 150μm and the depth of 30-35μm distributed circumferentially on the disc surface.The alloying element Cr was sputtered to the laser texturing steel surface by double glow plasma technique.A deep diffusion layer with a thickness of 30μm and a high hardness of HV900 was formed in this alloy.Tribological experiments of three types of samples(smooth,texturing and texturing+alloying) were conducted with a ring-on-disc tribometer to simulate the face seal.It is found that,in comparison with smooth steel surfaces,the laser texturing samples significantly reduce the friction coefficient.Moreover,the lower wear rate of the sample treated with the two surface techniques is observed.展开更多
Based on the working principles of particle bed comminution, particles produced by high-pressure grinding rolls (HPGR) have surface properties different from particles produced by other grinding patterns, which exer...Based on the working principles of particle bed comminution, particles produced by high-pressure grinding rolls (HPGR) have surface properties different from particles produced by other grinding patterns, which exert great influence on mineral flotation. Flotation performances of calcite particles under different grinding patterns involving the use of HPGR, a jaw crusher, a dry ball mill, a wet ball mill, and a wet rod mill were studied using single mineral flotation tests. The surface properties of the particles under different grinding patterns were characterized to determine the flotation performance variation in terms of specific surface area, particle size distribution, AFM, XPS, and zeta potential. The results show that particles ground by HPGR exhibited improved flotation performance within the lower range of grinding fineness in both NaOL and dodecyl amine flotation systems compared to the particles prepared using other grinding patterns. Specific surface area, particle size distribution, surface roughness, Fe(III) contamination, binding energy, and zeta potential are greatly influenced by grinding patterns, which is the main cause of the flotation performance variation.展开更多
Li-rich layered oxides have become one of the most concerned cathode materials for high-energy lithiumion batteries, but they still suffer from poor cycling stability and detrimental voltage decay, especially at eleva...Li-rich layered oxides have become one of the most concerned cathode materials for high-energy lithiumion batteries, but they still suffer from poor cycling stability and detrimental voltage decay, especially at elevated temperature. Herein, we proposed a surface heterophase coating engineering based on amorphous/crystalline Li3 PO4 to address these issues for Li-rich layered oxides via a facile wet chemical method. The heterophase coating layer combines the advantages of physical barrier effect achieved by amorphous Li3 PO4 with facilitated Li+diffusion stemmed from crystalline Li3 PO4. Consequently, the modified Li(1.2) Ni(0.2) Mn(0.6) O2 delivers higher initial coulombic efficiency of 92% with enhanced cycling stability at 55 °C(192.9 mAh/g after 100 cycles at 1 C). More importantly, the intrinsic voltage decay has been inhibited as well, i.e. the average potential drop per cycle decreases from 5.96 mV to 2.99 mV. This surface heterophase coating engineering provides an effective strategy to enhance the high-temperature electrochemical performances of Li-rich layered oxides and guides the direction of surface modification strategies for cathode materials in the future.展开更多
A new numerical method was developed for predicting the steady hydrodynamic performance of ducted propellers. A potential based surface panel method was applied both to the duct and the propeller, and the interaction ...A new numerical method was developed for predicting the steady hydrodynamic performance of ducted propellers. A potential based surface panel method was applied both to the duct and the propeller, and the interaction between them was solved by an induced velocity potential iterative method. Compared with the induced velocity iterative method, the method presented can save programming and calculating time. Numerical results for a JD simplified ducted propeller series showed that the method presented is effective for predicting the steady hydrodynamic performance of ducted propellers.展开更多
Fatigue performance is a serious concern for mechanical components subject to cyclical stresses,particularly where safety is paramount.The fatigue performance of components relies closely on their surface integrity be...Fatigue performance is a serious concern for mechanical components subject to cyclical stresses,particularly where safety is paramount.The fatigue performance of components relies closely on their surface integrity because the fatigue cracks generally initiate from free surfaces.This paper reviewed the published data,which addressed the effects of machined surface integrity on the fatigue performance of metal workpieces.Limitations in existing studies and the future directions in anti-fatigue manufacturing field were proposed.The remarkable surface topography(e.g.,low roughness and few local defects and inclusions)and large compressive residual stress are beneficial to fatigue performance.However,the indicators that describe the effects of surface topography and residual stress accurately need further study and exploration.The effect of residual stress relaxation under cycle loadings needs to be precisely modeled precisely.The effect of work hardening on fatigue performance had two aspects.Work hardening could increase the material yield strength,thereby delaying crack nucleation.However,increased brittleness could accel-erate crack propagation.Thus,finding the effective control mechanism and method of work hardening is urgently needed to enhance the fatigue performance of machined components.The machining-induced metallurgical structure changes,such as white layer,grain refinement,dislocation,and martensitic transformation affect the fatigue performance of a workpiece significantly.However,the unified and exact conclusion needs to be investigated deeply.Finally,different surface integrity factors had complicated reciprocal effects on fatigue performance.As such,studying the comprehensive influence of surface integrity further and establishing the reliable prediction model of workpiece fatigue performance are meaningful for improving reliability of components and reducing test cost.展开更多
The tooth surface shape of hypoid gear is very complicated, and tooth surface accuracy of hypoid gear can be measured by using the latticed measurement and scanning measurement. Advantages and disadvantages of the two...The tooth surface shape of hypoid gear is very complicated, and tooth surface accuracy of hypoid gear can be measured by using the latticed measurement and scanning measurement. Advantages and disadvantages of the two measurement patterns are compared and application of their measurement data on hypoid gear's quality management is analyzed. How to use these measurement data to simulate the dynamical performance of hypoid gear is researched, and the intelligent predicton of the dynamical performance indexes of contact spot, root stress, vibration exciting forces and load distribution and hertz contact stress on the tooth surface are carried out. This research work has an important guiding sense to design and ma- chine hypoid gear with low vibration and noise.展开更多
The effects of acetylene black powder surface free energy on air electrode electrochemical performance and lifetime were studied.The acetylene black was immersed in 30%H_(2)O_(2)at room temperature and the changes of ...The effects of acetylene black powder surface free energy on air electrode electrochemical performance and lifetime were studied.The acetylene black was immersed in 30%H_(2)O_(2)at room temperature and the changes of functional groups and surface free energy were investigated by X-ray Photoelectron Spectroscopy(XPS)and powder contact angle(CA).The air electrode performance was characterized by the potential polarization curves and the lifetime was measured by constant-current discharge.It shows that,its surface free energy is the lowest when the acetylene black is immersed in H_(2)O_(2)for 240 h.The polarization potential of the air electrode prepared by the pretreated acetylene black is 0.25 V(vs.Hg/HgO),0.21 V lower than the air electrode with untreated acetylene black when the working current density is 100 mA·cm^(-1).And its lifetime is over 800 h at 80 mA·cm^(-1).The pretreatment of acetylene black for proper time by H_(2)O_(2)is favorable for the stability of the tri-phase reaction interface of air electrode and improvement of its performance.展开更多
The surface performance of workpieces processed by electrical discharge machining in gas(dry EDM)was studied in this paper.Firstly,the composition,micro hardness and recast layer of electrical discharge machined(EDMed...The surface performance of workpieces processed by electrical discharge machining in gas(dry EDM)was studied in this paper.Firstly,the composition,micro hardness and recast layer of electrical discharge machined(EDMed)surface of 45 carbon steels in air were investigated through different test analysis methods.The results show that the workpiece surface EDMed in air contains a certain quantity of oxide,and oxidation occurs on the workpiece surface.Compared with the surface of workpieces processed in kerosene,fewer cracks exist on the dry EDMed workpiece surface,and the surface recast layer is thinner than that obtained by conventional EDM.The micro hardness of workpieces machined by dry EDM method is lower than that machined in kerosene,and higher than that of the matrix.In addition,experiments were conducted on the surface wear resistance of workpieces processed in air and kerosene using copper electrode and titanium alloy electrode.The results indicate that the surface wear resistance of workpieces processed in air can be improved,and it is related with tool material and dielectric.展开更多
To evaluate various interlaminar bonding reinforcement techniques used for steel bridge decks,the UHPC surface was roughened with shot blasting(SB),transverse grooving(TG)and surface embedded stone(S),epoxy resin(E),e...To evaluate various interlaminar bonding reinforcement techniques used for steel bridge decks,the UHPC surface was roughened with shot blasting(SB),transverse grooving(TG)and surface embedded stone(S),epoxy resin(E),epoxy asphalt(EA)and high viscosity high elasticity asphalt(HV)as interlayer bonding materials.In addition,a diagonal shear test was conducted using a self-designed diagonal shear jig.The effects of adhesive layer materials type,surface texture type,and different loading rates on the interlaminar bonding performance of UHPC/SMA combination specimens were investigated.The experimental study showed that the peak shear strength and shear modulus of the combined specimen decreased gradually with the decrease of thermosetting of the adhesive layer materials.The peak shear fracture energy of E was greater than that of HV and EA.The synergistic effect of the contact force generated by the roughing of the UHPC surface,the friction force,and the bonding force provided by the adhesive layer material can significantly improve the interlaminar shear performance of the assemblies.The power-law function of shear strength and shear modulus was proposed.The power-law model of peak shear strength and loading rate was verified.The shear strength and predicted shear strength satisfy the positive proportional functions with scale factors of 0.985,1.015,0.961,and 1.028,respectively.展开更多
Marine biofouling causes serious harms to surfaces of marine devices in transportation,aquaculture,and offshore construction.Traditional antifouling methods pollute the environment.A novel and green antifouling strate...Marine biofouling causes serious harms to surfaces of marine devices in transportation,aquaculture,and offshore construction.Traditional antifouling methods pollute the environment.A novel and green antifouling strategy was developed to prevent effectively the adhe sion of bacteria and microalgae.An antifouling surface was fabricated via coating Turgencin BMox2(TB)onto dopamine-modified 304stainless steel(304 SS).The surface physical and chemical properties before and after modification were characterized by Fourier transform infrared spectrometer(FTIR),X-ray photoelectron spectrometer(XPS),contact angle measurement(CA),3D optical profilometer,ellipsometer,and atomic force microscope(AFM).Antimicrobial peptide was coated onto the surface of 304 SS successfully,and the surface morphology and wettability of the modified sample were modified.Moreover,cytocompatibility of the peptide was evaluated by co-culture of peptide and cells,indicating promising cell biocompatibility at the modified sample surface.At last,antifouling performance and electrochemical corrosion were tested.Results show that the adhesion rates of Vibrio natriegens and Phaeodactylum tricornutum on the antifouling surface were reduced by 99.85% and 67.93%,respectively from those of untreated samples.Therefore,the modified samples retained superior corrosion resistance.The study provide a simply and green way against biofouling on ship hulls and marine equipment.展开更多
Reconfigurable intelligent surface(RIS)-assisted symbiotic radio is a spectrum-and energy-efficient communication paradigm,in which an RIS performs passive beamforming to enhance active transmission,while using the el...Reconfigurable intelligent surface(RIS)-assisted symbiotic radio is a spectrum-and energy-efficient communication paradigm,in which an RIS performs passive beamforming to enhance active transmission,while using the electromagnetic waves from the active transmission for additional information transfer(i.e.,passive transmission).In this paper,a hybrid RIS-based modulation,termed hybrid phase and code modulation(HPCM),is proposed to improve the reliability of RIS-assisted symbiotic radio.In RIS-HPCM,the RIS simultaneously performs direct sequence spread spectrum and passive beamforming on incident signals.Moreover,both the spreading code and phase offset are exploited to carry the RIS’s own information.A low-complexity detector is designed,in which the receiver first detects the spreading codes and then demodulates the constellation symbols.We analyze the bit error rate(BER)performance of RIS-HPCM over Rician fading channels.BER upper bounds and approximate BER expressions are derived in closed-form for maximum-likelihood and low-complexity detectors,respectively.Simulation results in terms of BER verify the analysis and show the superiority of RIS-HPCM over the existing RIS-based modulation.展开更多
Oxygen deficiency has crucial effects on the crystal structure and electrochemical performance of spinel oxide lithium electrode materials such as LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)cathode.In particular,the oxygen stoichio...Oxygen deficiency has crucial effects on the crystal structure and electrochemical performance of spinel oxide lithium electrode materials such as LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)cathode.In particular,the oxygen stoichiometry on the crystal surface differs from that on the crystal interior in LNMO.The detection of local oxygen loss in LNMO and its correlation with the crystal structure and the cycling stability of LNMO remain challenging.In this study,the effect of oxygen deficiency in LNMO controlled by sintering temperature on the surface crystal structure and electrochemical performance of LNMO is comprehensively investigated.The high concentration of oxygen vacancies segregates at the surface regions of LNMO forming a thin rock‐salt and/or deficient spinel surface layer.The atomic‐level surface structure reconstruction was demonstrated by annular dark‐field and annular brightfield techniques.For the synthesis of LNMO,the higher sintering temperature results in higher crystallinity but the higher oxygen deficiency in LNMO.The high crystallinity of LNMO would increase the thermal stability of LNMO cathodes while the high content of oxygen deficiency would decrease the surface structural stability of LNMO.Therefore,the LNMO sintered at a medium temperature of 850°C achieved the best capacity retention.The results suggest a competitive function mechanism between oxygen stoichiometry and the crystallinity of LNMO on the cycling performance of LNMO.展开更多
In this work,poly(3-hexylthiophene)(P3HT)ultrathin films(P3HT-T)were prepared by spin-coating a dilute P3HT solution(in a toluene:o-dichlorobenzene(Tol:ODCB)blend with a volume ratio of 80:20)with ultrasonication and ...In this work,poly(3-hexylthiophene)(P3HT)ultrathin films(P3HT-T)were prepared by spin-coating a dilute P3HT solution(in a toluene:o-dichlorobenzene(Tol:ODCB)blend with a volume ratio of 80:20)with ultrasonication and the addition of the nucleating agent bicycle[2.2.1]heptane-2,3-dicarboxylic acid disodium salt(HPN-68L)on glass,Si wafers and indium tin oxide(ITO)substrates.The electrical and mechanical properties of the P3HT-T ultrathin films were investigated,and it was found that the conductivity and crack onset strain(COS)were simultaneously improved in comparison with those of the corresponding pristine P3HT film(P3HT-0,without ultrasonication and nucleating agent)on the same substrate,regardless of what substrate was used.Moreover,the conductivity of P3HT-T ultrathin films on different substrates was similar(varying from 3.7 S·cm^(-1)to 4.4 S·cm^(-1)),yet the COS increased from 97%to 138%by varying the substrate from a Si wafer to ITO.Combining grazing-incidence wide-angle X-ray diffraction(GIXRD),UV-visible(UV-Vis)spectroscopy and atomic force microscopy(AFM),we found that the solid order and crystallinity of the P3HT-T ultrathin film on the Si wafer are highest,followed by those on glass,and much lower on ITO.Finally,the surface energy and roughness of three substrates were investigated,and it was found that the polar component of the surface energyγp plays a critical role in determining the crystalline microstructures of P3HT ultrathin films on different substrates.Our work indicates that the P3HT ultrathin film can obviously improve the stretchability and simultaneously retain similar electrical performance when a suitable substrate is chosen.These findings offer a new direction for research on stretchable CP ultrathin films to facilitate future practical applications.展开更多
基金support from the National Natural Science Foundation of China(21802120,21872121,and 21908189)the National Key R&D Program of China(2016YFA0202900)+3 种基金the Key R&D Project of Zhejiang Province(2020C01133)the Fundamental Research Funds for the Central Universities(G2019KY05119)the China Postdoctoral Science Foundation(2021 M692634)the Natural Science Basic Research Program of Shaanxi Province(2022JQ-118)are greatly appreciated.
文摘The surface properties of catalysts determine the intrinsic activity and adaptability.Ruthenium is regarded as a potential candidate to substitute platinum for water electrolysis due to the low cost and analogous electronic structures while it suffers from severe dissolution and stability problems.Herein,the modification of Ru/C with atomically dispersed cobalt atoms is achieved via a simple thermal doping method.The newly formed amorphous shell with Ru-Co sites on the Ru/C catalyst improved the hydrogen evolution reaction activity and stability significantly.Impressively,the obtained Co1Ru@Ru/CN_(x)catalyst exhibited an overpotential as low as 30 mV at 10 mA cm^(-2)in an alkaline medium,which is among the best HER catalysts reported so far.The oxygen oxophile Co prevents the fast oxidation and dissolution of Ru species,ensuring outstanding long-term durability up to 70 h.Theoretical calculations reveal that the Ru-Co coordination acts as a more active site for water dissociation than the Ru-Ru.Meanwhile,the"Ru-Co shell/Ru core"structures show high adaptability for the reaction conditions.This simple doping strategy offers prospects for scalable preparation of highly active electrocatalysts.
文摘Taking bump-type gas foil bearings as the research object,a deformation model of bump foil and a thin-plate finite element model of top foil were proposed.By solving Reynolds equation and energy equation,the pressure distribution and the temperature distribution of gas films in foil bearings were obtained.Further,a numerical method for calculating the lubrication performance of gas foil bearings with considering the surface roughness was proposed.With a specific example,effects of the surface roughness on the bearing lubrication performance were parametrically studied.The results indicate that rougher journal surface can lead to larger fluctuation of the lubrication performance,while surface roughness of top foil has few effects on the fluctuation.Moreover,the mean values of performance parameters almost remain constant at different values of surface roughness.
基金supported by a National Research Foundation of Korea grant provided by the Korean government(NRF-2021R1A2C4002746 and 2017R1A5A2015541)This research was supported by"Regional Innovation Strategy(RIS)"through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-001)Finally,this work was supported by a funding for the academic research program of Chungbuk National University in 2022.
文摘Corrugated surface microparticles comprising levofloxacin(LEV),chitosan and organic acid were prepared using the 3-combo spray drying method.The amount and the boiling point of the organic acid affected the degree of roughness.In this study,we tried to improve the aerodynamic performance and increase aerosolization by corrugated surface microparticle for lung drug delivery efficiency as dry powder inhaler.HMP175 L20 prepared with 175 mmol propionic acid solution was corrugated more than HMF175 L20 prepared with 175 mmol formic acid solution.The ACI and PIV results showed a significant increase in aerodynamic performance of corrugated microparticles.The FPF value of HMP175 L20 was 41.3%±3.9%compared with 25.6%±7.7%of HMF175 L20.Corrugated microparticles also showed better aerosolization,decreased x-axial velocity,and variable angle.Rapid dissolution of drug formulationswas observed in vivo.Lowdoses administered to the lungs achieved higher LEV concentrations in the lung fluid than high doses administered orally.Surface modification in the polymer-based formulation was achieved by controlling the evaporation rate and improving the inhalation efficiency of DPIs.
基金Funded by the Key Research and Development Projects in Shaanxi Province(No.2022SF-328)Science and Technology Project of Shaanxi Department of Transportation(Nos.19-10K,19-28K)Science and Technology Project of Henan Department of Transportation(No.2020J-2-3)。
文摘In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtures.First of all,the basic performance parameters of sinocalamus affinis fiber,phyllostachys pubescens fiber,green bamboo fiber were tested and analyzed,and the optimal content and length were put forward.Then,the mix ratio design of the bamboo fiber modified asphalt mixture was further designed through the response surface method,and was verified the rationality of the mix ratio.Finally,the mixture specimens were made according to the experimental design mix ratio,and the high temperature,low temperature performance and moisture susceptibility of the bamboo fiber modified mixtures asphalt were tested.The results showed that the high temperature performance,low temperature performance and moisture susceptibility of bamboo fiber modified asphalt mixtures were improved compared with the performance of SBS modified asphalt mixture.When the length of bamboo fiber is 7.25 mm and the content of 0.22%,the road performance of the asphalt mixture was optimal.Consequentially,the decomposition of bamboo residue into bamboo fiber and its application in asphalt pavement can improve the reuse of bamboo waste,with remarkable environmental benefits and great promotion value.
基金the Fundamental Research Funds for the Central Universities,China(No.06500177)the National Natural Science Foundation of China Joint Fund Project(No.U1764255)。
文摘Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the application prospects of batteries.However,facing challenges,including phase transitions,ambient stability,side reactions,and irreversible anionic oxygen activity,the cycling performance of layered oxide cathode materials still cannot meet the application requirements.Therefore,this review proposes several strategies to address these challenges.First,bulk doping is introduced from three aspects:cationic single doping,anionic single doping,and multi-ion doping.Second,homogeneous surface coating and concentration gradient modification are reviewed.In addition,methods such as mixed structure design,particle engineering,high-entropy material construction,and integrated modification are proposed.Finally,a summary and outlook provide a new horizon for developing and modifying layered oxide cathode materials.
基金the financial support from Research Training Program(RTP)funded by the Department of Education,Australian Government。
文摘Lithium-ion batteries (LIB) have received substantial attention in the last 10 years,as they offer great promise as power sources that can lead to the electric vehicle (EV) revolution in the next 5 years.Since the cathode serves as a key component in LIB,its properties significantly affect the performance of the whole system.Recently,the cathode surface modification based on coating technique has been widely employed to enhance the electrochemical performances by improving the material conductivity,stabilising the physical structure of materials,as well as preventing the reactions between the electrode and electrolyte.In this work,we reviewed the present of a number of promising cathode materials for Li-ion batteries.After that,we summarized the very recent research progress focusing on the surface coating strategies,mainly including the coating materials,the coating technologies,as well as the corresponding working mechanisms for cathodes.At last,the challenges faced and future guidelines for optimizing cathode materials are discussed.In this study,we propose that the structure of cathode is a crucial factor during the selection of coating materials and technologies.
基金Project(2007046) supported by High Technology Research Project of Jiangsu Province,China
文摘The cooperative effect of laser surface texturing(LST) and double glow plasma surface alloying on tribological performance of lubricated sliding contacts was investigated.A Nd:YAG laser was used to generate microdimples on steel surfaces. Dimples with the diameter of 150μm and the depth of 30-35μm distributed circumferentially on the disc surface.The alloying element Cr was sputtered to the laser texturing steel surface by double glow plasma technique.A deep diffusion layer with a thickness of 30μm and a high hardness of HV900 was formed in this alloy.Tribological experiments of three types of samples(smooth,texturing and texturing+alloying) were conducted with a ring-on-disc tribometer to simulate the face seal.It is found that,in comparison with smooth steel surfaces,the laser texturing samples significantly reduce the friction coefficient.Moreover,the lower wear rate of the sample treated with the two surface techniques is observed.
基金Project(2013EG132088)supported by Special Program for Research Institutes of the Ministry of Science and Technology,ChinaProject(12010402c187)supported by Key Science and Technology Program of Anhui Province,ChinaProject(GJKJ-14-89)supported by Science and Technology Program of Nanchang Institute of Science and Technology,China
文摘Based on the working principles of particle bed comminution, particles produced by high-pressure grinding rolls (HPGR) have surface properties different from particles produced by other grinding patterns, which exert great influence on mineral flotation. Flotation performances of calcite particles under different grinding patterns involving the use of HPGR, a jaw crusher, a dry ball mill, a wet ball mill, and a wet rod mill were studied using single mineral flotation tests. The surface properties of the particles under different grinding patterns were characterized to determine the flotation performance variation in terms of specific surface area, particle size distribution, AFM, XPS, and zeta potential. The results show that particles ground by HPGR exhibited improved flotation performance within the lower range of grinding fineness in both NaOL and dodecyl amine flotation systems compared to the particles prepared using other grinding patterns. Specific surface area, particle size distribution, surface roughness, Fe(III) contamination, binding energy, and zeta potential are greatly influenced by grinding patterns, which is the main cause of the flotation performance variation.
基金supported by the National Key R&D Program of China (2016YFB0100301)the National Natural Science Foundation of China (51802020, 51802019)+1 种基金the Beijing Institute of Technology Research Fund Program for Young Scholarsthe Young Elite Scientists Sponsorship Program by CAST (2018QNRC001。
文摘Li-rich layered oxides have become one of the most concerned cathode materials for high-energy lithiumion batteries, but they still suffer from poor cycling stability and detrimental voltage decay, especially at elevated temperature. Herein, we proposed a surface heterophase coating engineering based on amorphous/crystalline Li3 PO4 to address these issues for Li-rich layered oxides via a facile wet chemical method. The heterophase coating layer combines the advantages of physical barrier effect achieved by amorphous Li3 PO4 with facilitated Li+diffusion stemmed from crystalline Li3 PO4. Consequently, the modified Li(1.2) Ni(0.2) Mn(0.6) O2 delivers higher initial coulombic efficiency of 92% with enhanced cycling stability at 55 °C(192.9 mAh/g after 100 cycles at 1 C). More importantly, the intrinsic voltage decay has been inhibited as well, i.e. the average potential drop per cycle decreases from 5.96 mV to 2.99 mV. This surface heterophase coating engineering provides an effective strategy to enhance the high-temperature electrochemical performances of Li-rich layered oxides and guides the direction of surface modification strategies for cathode materials in the future.
基金Supported by the Open Research Foundation of State Key Laboratory of AUV,HEU under Grant No.2007015
文摘A new numerical method was developed for predicting the steady hydrodynamic performance of ducted propellers. A potential based surface panel method was applied both to the duct and the propeller, and the interaction between them was solved by an induced velocity potential iterative method. Compared with the induced velocity iterative method, the method presented can save programming and calculating time. Numerical results for a JD simplified ducted propeller series showed that the method presented is effective for predicting the steady hydrodynamic performance of ducted propellers.
基金Supported by National Natural Science Foundation of China(Grant No.52005281)Major Program of Shandong Province Natural Science Foundation of China(Grant No.ZR2018ZA0401)Applied Basic Research Projects for Qingdao Innovation Plan(Grant No.18-2-2-67-jch).
文摘Fatigue performance is a serious concern for mechanical components subject to cyclical stresses,particularly where safety is paramount.The fatigue performance of components relies closely on their surface integrity because the fatigue cracks generally initiate from free surfaces.This paper reviewed the published data,which addressed the effects of machined surface integrity on the fatigue performance of metal workpieces.Limitations in existing studies and the future directions in anti-fatigue manufacturing field were proposed.The remarkable surface topography(e.g.,low roughness and few local defects and inclusions)and large compressive residual stress are beneficial to fatigue performance.However,the indicators that describe the effects of surface topography and residual stress accurately need further study and exploration.The effect of residual stress relaxation under cycle loadings needs to be precisely modeled precisely.The effect of work hardening on fatigue performance had two aspects.Work hardening could increase the material yield strength,thereby delaying crack nucleation.However,increased brittleness could accel-erate crack propagation.Thus,finding the effective control mechanism and method of work hardening is urgently needed to enhance the fatigue performance of machined components.The machining-induced metallurgical structure changes,such as white layer,grain refinement,dislocation,and martensitic transformation affect the fatigue performance of a workpiece significantly.However,the unified and exact conclusion needs to be investigated deeply.Finally,different surface integrity factors had complicated reciprocal effects on fatigue performance.As such,studying the comprehensive influence of surface integrity further and establishing the reliable prediction model of workpiece fatigue performance are meaningful for improving reliability of components and reducing test cost.
基金National Natural Science Foundation of China(No. 50976108)
文摘The tooth surface shape of hypoid gear is very complicated, and tooth surface accuracy of hypoid gear can be measured by using the latticed measurement and scanning measurement. Advantages and disadvantages of the two measurement patterns are compared and application of their measurement data on hypoid gear's quality management is analyzed. How to use these measurement data to simulate the dynamical performance of hypoid gear is researched, and the intelligent predicton of the dynamical performance indexes of contact spot, root stress, vibration exciting forces and load distribution and hertz contact stress on the tooth surface are carried out. This research work has an important guiding sense to design and ma- chine hypoid gear with low vibration and noise.
基金This work was financially supported by the Key Technologies R&D Programme of Hebei Province(401073).
文摘The effects of acetylene black powder surface free energy on air electrode electrochemical performance and lifetime were studied.The acetylene black was immersed in 30%H_(2)O_(2)at room temperature and the changes of functional groups and surface free energy were investigated by X-ray Photoelectron Spectroscopy(XPS)and powder contact angle(CA).The air electrode performance was characterized by the potential polarization curves and the lifetime was measured by constant-current discharge.It shows that,its surface free energy is the lowest when the acetylene black is immersed in H_(2)O_(2)for 240 h.The polarization potential of the air electrode prepared by the pretreated acetylene black is 0.25 V(vs.Hg/HgO),0.21 V lower than the air electrode with untreated acetylene black when the working current density is 100 mA·cm^(-1).And its lifetime is over 800 h at 80 mA·cm^(-1).The pretreatment of acetylene black for proper time by H_(2)O_(2)is favorable for the stability of the tri-phase reaction interface of air electrode and improvement of its performance.
基金Sponsored by the Fund for the Doctoral Program of Higher Education (RFDP) (Grant No. CBQQ24403007)the Innovation Fund of HIT(Grant No.CBQQ18400018)
文摘The surface performance of workpieces processed by electrical discharge machining in gas(dry EDM)was studied in this paper.Firstly,the composition,micro hardness and recast layer of electrical discharge machined(EDMed)surface of 45 carbon steels in air were investigated through different test analysis methods.The results show that the workpiece surface EDMed in air contains a certain quantity of oxide,and oxidation occurs on the workpiece surface.Compared with the surface of workpieces processed in kerosene,fewer cracks exist on the dry EDMed workpiece surface,and the surface recast layer is thinner than that obtained by conventional EDM.The micro hardness of workpieces machined by dry EDM method is lower than that machined in kerosene,and higher than that of the matrix.In addition,experiments were conducted on the surface wear resistance of workpieces processed in air and kerosene using copper electrode and titanium alloy electrode.The results indicate that the surface wear resistance of workpieces processed in air can be improved,and it is related with tool material and dielectric.
基金Funded by National Natural Science Foundation of China(Nos.U21A20149 and 51878003)。
文摘To evaluate various interlaminar bonding reinforcement techniques used for steel bridge decks,the UHPC surface was roughened with shot blasting(SB),transverse grooving(TG)and surface embedded stone(S),epoxy resin(E),epoxy asphalt(EA)and high viscosity high elasticity asphalt(HV)as interlayer bonding materials.In addition,a diagonal shear test was conducted using a self-designed diagonal shear jig.The effects of adhesive layer materials type,surface texture type,and different loading rates on the interlaminar bonding performance of UHPC/SMA combination specimens were investigated.The experimental study showed that the peak shear strength and shear modulus of the combined specimen decreased gradually with the decrease of thermosetting of the adhesive layer materials.The peak shear fracture energy of E was greater than that of HV and EA.The synergistic effect of the contact force generated by the roughing of the UHPC surface,the friction force,and the bonding force provided by the adhesive layer material can significantly improve the interlaminar shear performance of the assemblies.The power-law function of shear strength and shear modulus was proposed.The power-law model of peak shear strength and loading rate was verified.The shear strength and predicted shear strength satisfy the positive proportional functions with scale factors of 0.985,1.015,0.961,and 1.028,respectively.
基金Supported by the National Natural Science Foundation of China(Nos.51905468,51375355)the Natural Science Foundation of Jiangsu Province(No.BK20190916)+1 种基金the“Blue Project”of Yangzhou Universitythe Yangzhou City-Yangzhou University Cooperation Foundation(No.YZU201801)。
文摘Marine biofouling causes serious harms to surfaces of marine devices in transportation,aquaculture,and offshore construction.Traditional antifouling methods pollute the environment.A novel and green antifouling strategy was developed to prevent effectively the adhe sion of bacteria and microalgae.An antifouling surface was fabricated via coating Turgencin BMox2(TB)onto dopamine-modified 304stainless steel(304 SS).The surface physical and chemical properties before and after modification were characterized by Fourier transform infrared spectrometer(FTIR),X-ray photoelectron spectrometer(XPS),contact angle measurement(CA),3D optical profilometer,ellipsometer,and atomic force microscope(AFM).Antimicrobial peptide was coated onto the surface of 304 SS successfully,and the surface morphology and wettability of the modified sample were modified.Moreover,cytocompatibility of the peptide was evaluated by co-culture of peptide and cells,indicating promising cell biocompatibility at the modified sample surface.At last,antifouling performance and electrochemical corrosion were tested.Results show that the adhesion rates of Vibrio natriegens and Phaeodactylum tricornutum on the antifouling surface were reduced by 99.85% and 67.93%,respectively from those of untreated samples.Therefore,the modified samples retained superior corrosion resistance.The study provide a simply and green way against biofouling on ship hulls and marine equipment.
基金supported in part by the National Natural Science Foundation of China under Grant 62201228 and Grant 62001190in part by the Science and Technology Major Project of Tibetan Autonomous Region of China under Grant No.XZ202201ZD0006G02.
文摘Reconfigurable intelligent surface(RIS)-assisted symbiotic radio is a spectrum-and energy-efficient communication paradigm,in which an RIS performs passive beamforming to enhance active transmission,while using the electromagnetic waves from the active transmission for additional information transfer(i.e.,passive transmission).In this paper,a hybrid RIS-based modulation,termed hybrid phase and code modulation(HPCM),is proposed to improve the reliability of RIS-assisted symbiotic radio.In RIS-HPCM,the RIS simultaneously performs direct sequence spread spectrum and passive beamforming on incident signals.Moreover,both the spreading code and phase offset are exploited to carry the RIS’s own information.A low-complexity detector is designed,in which the receiver first detects the spreading codes and then demodulates the constellation symbols.We analyze the bit error rate(BER)performance of RIS-HPCM over Rician fading channels.BER upper bounds and approximate BER expressions are derived in closed-form for maximum-likelihood and low-complexity detectors,respectively.Simulation results in terms of BER verify the analysis and show the superiority of RIS-HPCM over the existing RIS-based modulation.
基金National Natural Science Foundation of China,Grant/Award Numbers:22075003,22090043,U1930401,U2030206。
文摘Oxygen deficiency has crucial effects on the crystal structure and electrochemical performance of spinel oxide lithium electrode materials such as LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)cathode.In particular,the oxygen stoichiometry on the crystal surface differs from that on the crystal interior in LNMO.The detection of local oxygen loss in LNMO and its correlation with the crystal structure and the cycling stability of LNMO remain challenging.In this study,the effect of oxygen deficiency in LNMO controlled by sintering temperature on the surface crystal structure and electrochemical performance of LNMO is comprehensively investigated.The high concentration of oxygen vacancies segregates at the surface regions of LNMO forming a thin rock‐salt and/or deficient spinel surface layer.The atomic‐level surface structure reconstruction was demonstrated by annular dark‐field and annular brightfield techniques.For the synthesis of LNMO,the higher sintering temperature results in higher crystallinity but the higher oxygen deficiency in LNMO.The high crystallinity of LNMO would increase the thermal stability of LNMO cathodes while the high content of oxygen deficiency would decrease the surface structural stability of LNMO.Therefore,the LNMO sintered at a medium temperature of 850°C achieved the best capacity retention.The results suggest a competitive function mechanism between oxygen stoichiometry and the crystallinity of LNMO on the cycling performance of LNMO.
基金supported by the National Natural Science Foundation of China(No.21975029)。
文摘In this work,poly(3-hexylthiophene)(P3HT)ultrathin films(P3HT-T)were prepared by spin-coating a dilute P3HT solution(in a toluene:o-dichlorobenzene(Tol:ODCB)blend with a volume ratio of 80:20)with ultrasonication and the addition of the nucleating agent bicycle[2.2.1]heptane-2,3-dicarboxylic acid disodium salt(HPN-68L)on glass,Si wafers and indium tin oxide(ITO)substrates.The electrical and mechanical properties of the P3HT-T ultrathin films were investigated,and it was found that the conductivity and crack onset strain(COS)were simultaneously improved in comparison with those of the corresponding pristine P3HT film(P3HT-0,without ultrasonication and nucleating agent)on the same substrate,regardless of what substrate was used.Moreover,the conductivity of P3HT-T ultrathin films on different substrates was similar(varying from 3.7 S·cm^(-1)to 4.4 S·cm^(-1)),yet the COS increased from 97%to 138%by varying the substrate from a Si wafer to ITO.Combining grazing-incidence wide-angle X-ray diffraction(GIXRD),UV-visible(UV-Vis)spectroscopy and atomic force microscopy(AFM),we found that the solid order and crystallinity of the P3HT-T ultrathin film on the Si wafer are highest,followed by those on glass,and much lower on ITO.Finally,the surface energy and roughness of three substrates were investigated,and it was found that the polar component of the surface energyγp plays a critical role in determining the crystalline microstructures of P3HT ultrathin films on different substrates.Our work indicates that the P3HT ultrathin film can obviously improve the stretchability and simultaneously retain similar electrical performance when a suitable substrate is chosen.These findings offer a new direction for research on stretchable CP ultrathin films to facilitate future practical applications.