期刊文献+
共找到292篇文章
< 1 2 15 >
每页显示 20 50 100
Why the abnormal phenomena of D-band center theory exist?A new BASED theory for surface catalysis and chemistry
1
作者 Zelong Qiao Run Jiang +1 位作者 Jimmy Yun Dapeng Cao 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第9期44-53,共10页
Since the D-band center theory was proposed,it has been widely used in the fields of surface chemistry by almost all researchers,due to its easy understanding,convenient operation and relative accuracy.However,with th... Since the D-band center theory was proposed,it has been widely used in the fields of surface chemistry by almost all researchers,due to its easy understanding,convenient operation and relative accuracy.However,with the continuous development of material systems and modification strategies,researchers have gradually found that D-band center theory is usually effective for large metal particle systems,but for small metal particle systems or semiconductors,such as single atom systems,the opposite conclusion to the D-band center theory is often obtained.To solve the issue above,here we propose a bonding and anti-bonding orbitals stable electron intensity difference(BASED)theory for surface chemistry.The newly-proposed BASED theory can not only successfully explain the abnormal phenomena of D-band center theory,but also exhibits a higher accuracy for prediction of adsorption energy and bond length of intermediates on active sites.Importantly,a new phenomenon of the spin transition state in the adsorption process is observed based on the BASED theory,where the active center atom usually yields an unstable high spin transition state to enhance its adsorption capability in the adsorption process of intermediates when their distance is about 2.5Å.In short,the BASED theory can be considered as a general principle to understand catalytic mechanism of intermediates on surfaces. 展开更多
关键词 surface chemistry surface catalysis D-band center theory Bonding orbital Anti-bonding orbital
下载PDF
The penetration depth of atomic radicals in tubes with catalytic surface properties
2
作者 Domen PAUL Miran MOZETIC +3 位作者 Rok ZAPLOTNIK Alenka VESEL Gregor PRIMC Denis DONLAGIC 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期157-164,共8页
Catalysis of molecular radicals is often performed in interesting experimental configurations.One possible configuration is tubular geometry.The radicals are introduced into the tubes on one side,and stable molecules ... Catalysis of molecular radicals is often performed in interesting experimental configurations.One possible configuration is tubular geometry.The radicals are introduced into the tubes on one side,and stable molecules are exhausted on the other side.The penetration depth of radicals depends on numerous parameters,so it is not always feasible to calculate it.This article presents systematic measurements of the penetration depth of oxygen atoms along tubes made from nickel,cobalt,and copper.The source of O atoms was a surfatron-type microwave plasma.The initial density of O atoms depended on the gas flow and was 0.7×10^(21)m^(-3),2.4×10^(21)m^(-3),and 4.2×10^(21)m^(-3)at the flow rates of 50,300,and 600 sccm,and pressures of 10,35,and 60 Pa,respectively.The gas temperature remained at room temperature throughout the experiments.The dissociation fraction decreased exponentially along the length of the tubes in all cases.The penetration depths for well-oxidized nickel were 1.2,1.7,and 2.4 cm,respectively.For cobalt,they were slightly lower at 1.0,1.3,and 1.6 cm,respectively,while for copper,they were 1.1,1.3,and 1.7 cm,respectively.The results were explained by gas dynamics and heterogeneous surface association.These data are useful in any attempt to estimate the loss of molecular fragments along tubes,which serve as catalysts for the association of various radicals to stable molecules. 展开更多
关键词 oxygen plasma penetration depth catalysis heterogeneous surface recombination atom loss
下载PDF
Surface Chemistry and Catalysis of Rare Earth Oxides I.A Study of the Reactivity of Surface Hydroxyls on CeO_2 and Pr_6O_(11) by FT-IR Spectroscopy 被引量:2
3
作者 李灿 蒋宗轩 辛勤 《Journal of Rare Earths》 SCIE EI CAS CSCD 1994年第2期96-101,共6页
The surface chemical properties of CeO2 and Pr6O11 have been investigated with FT-IR spectroscopy. The reactivities of surface hydroxyls were tested through the reaction of CO. Surface formate species are formed on Ce... The surface chemical properties of CeO2 and Pr6O11 have been investigated with FT-IR spectroscopy. The reactivities of surface hydroxyls were tested through the reaction of CO. Surface formate species are formed on CeO2 and Pr6O11 under CO atmosphere at 200℃ . and the reaction becomcs more prevailing at higher temperatures especially for partially reduced samples. The surface formate species are produced via the reaction of CO with surface hydroxyls which was confirmed by the reaction of CO with D2-treated CeO2 and Pr6O11. The Surface formate can be oxidized to carbonate at temperatures exceeding 300 ℃, and the surface hydroxyls could be recovered as the formate species decompose or are oxidized to carbonate species. The roles played by the surface hydroxyls and surface active sites in the CO oxidation are discussed. 展开更多
关键词 Cerium oxide Prascodymium oxide surface hydroxyls CO oxidation catalysis FT-IR Spectroscopy
下载PDF
First-Principles Study of Pd Single-Atom Catalysis to Hydrogen Desorption Reactions on MgH2(110) Surface
4
作者 Xin-xing Wu Wei Hu 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2019年第3期319-326,I0001,共9页
MgH2 is a promising and popular hydrogen storage material.In this work,the hydrogen desorption reactions of a single Pd atom adsorbed MgH2(110)surface are investigated by using first-principles density functional theo... MgH2 is a promising and popular hydrogen storage material.In this work,the hydrogen desorption reactions of a single Pd atom adsorbed MgH2(110)surface are investigated by using first-principles density functional theory calculations.We find that a single Pd atom adsorbed on the MgH2(110)surface can significantly lower the energy barrier of the hydrogen desorption reactions from 1.802 eV for pure MgH2(110)surface to 1.154 eV for Pd adsorbed MgH2(110)surface,indicating a strong Pd single-atom catalytic effect on the hydrogen desorption reactions.Furthermore,the Pd single-atom catalysis significantly reduces the hydrogen desorption temperature from 573K to 367K,which makes the hydrogen desorption reactions occur more easily and quickly on the MgH2(110)surface.We also discuss the microscopic process of the hydrogen desorption reactions through the reverse process of hydrogen spillover mechanism on the MgH2(110)surface.This study shows that Pd/MgH2 thin films can be used as good hydrogen storage materials in future experiments. 展开更多
关键词 Hydrogen storage MgH2(110)surface Pd single-atom catalysis Hydrogen desorption reaction
下载PDF
Selective sulfur conversion with surface engineering of electrocatalysts in a lithium-sulfur battery 被引量:2
5
作者 Yuejin Zhu Yinze Zuo +4 位作者 Xuechao Jiao Revanasiddappa Manjunatha Ejikeme Raphael Ezeigwe Wei Yan Jiujun Zhang 《Carbon Energy》 SCIE CSCD 2023年第2期72-84,共13页
The sluggish kinetics of multiphase sulfur conversion with homogeneous and heterogeneous electrochemical processes,causing the“shuttle effect”of soluble polysulfide species(PSs),is the challenges in terms of lithium... The sluggish kinetics of multiphase sulfur conversion with homogeneous and heterogeneous electrochemical processes,causing the“shuttle effect”of soluble polysulfide species(PSs),is the challenges in terms of lithium-sulfur batteries(LSBs).In this paper,a Mn_(3)O_(4-x) catalyst,which has much higher activity for heterogeneous reactions than for homogeneous reactions(namely,preferentialactivity catalysts),is designed by surface engineering with rational oxygen vacancies.Due to the rational design of the electronic structure,the Mn_(3)O_(4-x) catalyst prefers to accelerate the conversion of Li2S4 into Li_(2)S_(2)/Li_(2)S and optimize Li_(2)S deposition,reducing the accumulation of PSs and thus suppressing the“shuttle effect.”Both density functional theory calculations and in situ X-ray diffraction measurements are used to probe the catalytic mechanism and identify the reaction intermediates of MnS and Li_(y)Mn_(z)O_(4-x) for fundamental understanding.The cell with Mn_(3)O_(4-x) delivers an ultralow attenuation rate of 0.028% per cycle over 2000 cycles at 2.5 C.Even with sulfur loadings of 4.93 and 7.10mg cm^(-2) in a lean electrolyte(8.4μL mg s^(-1)),the cell still shows an initial areal capacity of 7.3mAh cm^(-2).This study may provide a new way to develop preferential-activity heterogeneous-reaction catalysts to suppress the“shuttle effect”of the soluble PSs generated during the redox process of LSBs. 展开更多
关键词 electrochemical kinetics heterogeneous catalysis lithium-sulfur batteries Mn3O4-x-catalyzed separator surface engineering
下载PDF
Optimization of Photo-Fenton Catalyst Preparation Based Bamboo Carbon Fiber by Response Surface Methodology
6
作者 Yizhang Wang Zhaoyang Yu +5 位作者 Jinbo Hu Shanshan Chang Yuan Liu Ting Li Gonggang Liu Xiaodong(Alice)Wang 《Journal of Renewable Materials》 SCIE EI 2023年第1期147-165,共19页
In this paper,the residue from bamboo factory has been used to design photo-Fenton catalyst,which has the advantages of low cost and magnetic recycling.The photo-Fenton catalytic performance of the biocarbon-based cat... In this paper,the residue from bamboo factory has been used to design photo-Fenton catalyst,which has the advantages of low cost and magnetic recycling.The photo-Fenton catalytic performance of the biocarbon-based catalyst was excellent and its optimal preparation process was also explored by response surface methodology.First,bamboo-carbon fiber was selected as the photo-Fenton catalyst carrier.Subsequently,the surface of the car-bon fiber was modified,with which dopamine,nano-Fe_(3)O_(4) and nano-TiO_(2) were successively loaded by hydro-thermal method.After the single factor tests,four factors including dopamine concentration,ferric chloride mass,P25 titanium dioxide mass and liquid-solid ratio were selected as the characteristic values.The degradation efficiency of photo-Fenton catalyst to methylene blue(MB)solution was treated as the response value.After the analysis of the response surface optimization,it was shown that the significance sequence of the selected 4 factors in terms of the MB degradation efficiency was arranged as follows:dopamine concentration>liquid-solid ratio>P25 titanium dioxide quality>ferric chloride quality.The optimal process parameters of fiber-carbon catalyst were affirmed as follows:the 1.7 mg/mL concentration of dopamine,the 1.2 g mass of ferric chloride,the 0.2 g mass of P25 titanium dioxide and the liquid-solid ratio of 170 mL/g.The experiment-measured average MB degra-dation efficiency performed by the optimized catalyst was 99.3%,which was nearly similar to the model-predicted value of 98.9%.It showed that the prediction model and response surface model were accurate and reliable.The results from response surface optimization could provide a good reference to design bamboo-based Fenton-like catalyst with excellent catalytic performance. 展开更多
关键词 Photo-fenton catalysis bamboo fiber carbon fiber response surface optimization methylene blue
下载PDF
Recent advances on surface metal hydrides studied by solid-state nuclear magnetic resonance spectroscopy
7
作者 Pan Gao Guangjin Hou 《Magnetic Resonance Letters》 2023年第1期31-42,I0003,共13页
Metal hydrides (MeH) on solid surfaces, i.e., surface MeH, are ubiquitous but criticalspecies in heterogeneous catalysis, and their intermediate roles have been proposed innumerous reactions such as (de)hydrogenation ... Metal hydrides (MeH) on solid surfaces, i.e., surface MeH, are ubiquitous but criticalspecies in heterogeneous catalysis, and their intermediate roles have been proposed innumerous reactions such as (de)hydrogenation and alkanes activation, etc., however, thedetailed spectroscopic characterizations remain challenging. Solid-state nuclear magnetic resonance (ssNMR) spectroscopy has become a powerful tool in surface studies, asit provides access to local structural characterizations at atomic level from multipleviews, with comprehensive information on chemical bonding and spatial structures. Inthis review, we summarized and discussed the latest research developments on thesuccessful application of ssNMR to characterize surface MeH species on solid catalystsincluding supported single-site heterogeneous catalysts, bulk metal oxides and metalmodified zeolites. We also discussed the opportunities and challenges in this field, aswell as the potential application/development of state-of-the-art ssNMR technologies toenable further exploration of metal hydrides in heterogeneous catalysis. 展开更多
关键词 Metal hydrides surface chemistry INTERMEDIATE Solid-state NMR Heterogeneous catalysis
下载PDF
TWO-STEP MECHANISM IN HETEROGENEOUS CATALYSIS AND DYNAMIC ANALYSIS
8
作者 陈诵英 彭少逸 杨争平 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1992年第1期103-107,共5页
Recent development of the dynamic analysis technique has made it possible to measure separately kinetic parameters of a catalytic reaction as well as to study the effect of catalyst preparation parameters. But its app... Recent development of the dynamic analysis technique has made it possible to measure separately kinetic parameters of a catalytic reaction as well as to study the effect of catalyst preparation parameters. But its application is still limned to first-order reaction. This work is aimed to demonstrate in some detail that,by comparison of the reaction rate expressions with the two-step mechanism used in catalytic kinetics and dynamic analysis, these methods can be extended to non-first-order reaction, and the kinetic parameters measured by dynamic techniques are interpreted for different reaction mechanisms. 展开更多
关键词 two-step MECHANISM DYNAMIC ANALYSIS HETEROGENEOUS catalysis
下载PDF
Mechanocatalysis of CO to CO_(2)on TiO_(2)surface controlled at atomic scale
9
作者 Yuuki Adachi Robert Turanský +6 位作者 Ján Brndiar Kamil Tokár Qiang Zhu Huan Fei Wen Yasuhiro Sugawara IvanŠtich Yan Jun Li 《Nano Research》 SCIE EI CSCD 2024年第7期5826-5834,共9页
The common ways to activate a chemical reaction are by heat,electric current,or light.However,mechanochemistry,where the chemical reaction is activated by applied mechanical force,is less common and only poorly unders... The common ways to activate a chemical reaction are by heat,electric current,or light.However,mechanochemistry,where the chemical reaction is activated by applied mechanical force,is less common and only poorly understood at the atomic scale.Here we report a tip-induced activation of chemical reaction of carbon monoxide to dioxide on oxidized rutile TiO_(2)(110)surface.The activation is studied by atomic force microscopy,Kelvin probe force microscopy under ultrahigh-vacuum and liquid nitrogen temperature conditions,and density functional theory(DFT)modeling.The reaction is inferred from hysteretic behavior of frequency shift signal further supported by vector force mapping of vertical and lateral forces needed to trigger the chemical reaction with torque motion of carbon monoxide towards an oxygen adatom.The reaction is found to proceed stochastically at very small tip-sample distances.Furthermore,the local contact potential difference reveals the atomic-scale charge redistribution in the reactants required to unlock the reaction.Our results open up new insights into the mechanochemistry on metal oxide surfaces at the atomic scale. 展开更多
关键词 atomic resolution MECHANOCHEMISTRY atomic force microscopy Kelvin probe force microscopy density functional theory(DFT)simulation CO oxidation catalysis rutile TiO_(2)surface
原文传递
Oxidation of formic acid on stepped Au(997) surface
10
作者 邬宗芳 姜志全 +3 位作者 金岳康 熊锋 孙光辉 黄伟新 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第10期1738-1746,共9页
The adsorption and reaction of formic acid (HCOOH) on clean and atomic oxygen‐covered Au(997) surfaces were studied by temperature‐programmed desorption/reaction spectroscopy (TPRS) and X‐ray photoelectron sp... The adsorption and reaction of formic acid (HCOOH) on clean and atomic oxygen‐covered Au(997) surfaces were studied by temperature‐programmed desorption/reaction spectroscopy (TPRS) and X‐ray photoelectron spectroscopy (XPS). At 105 K, HCOOH molecularly adsorbs on clean Au(997) and interacts more strongly with low‐coordinated Au atoms at (111) step sites than with those at (111) terrace sites. On an atomic oxygen‐covered Au(997) surface, HCOOH reacts with oxygen at‐oms to form HCOO and OH at 105 K. Upon subsequent heating, surface reactions occur among ad‐sorbed HCOO, OH, and atomic oxygen and produce CO2, H2O, and HCOOH between 250 and 400 K. The Au(111) steps bind surface adsorbates more strongly than the Au(111) terraces and exhibit larger barriers for HCOO(a) oxidation reactions. The surface reactions also depend on the relative coverages of co‐existing surface species. Our results elucidate the elementary surface reactions between formic acid and oxygen adatoms on Au surfaces and highlight the effects of the coordina‐tion number of the Au atoms on the Au catalysis. 展开更多
关键词 Gold catalysis surface chemistry Model catalyst Geometric structure Coordination number
下载PDF
Effects of Zr/Ti molar ratio in SO_4^(2-)/ZrO_(2-)TiO_2 calcined at different temperatures on its surface properties and glucose reactivity in near-critical methanol 被引量:3
11
作者 Lincai Peng Junping Zhuang Lu Lin 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第2期138-147,共10页
Effects of Zr/Ti molar ratio in SO42-/ZrO2-TiO2 solid acid catalyst calcined at different temperatures on its surface properties and catalytic activity were thoroughly investigated in this paper. The physicochemical c... Effects of Zr/Ti molar ratio in SO42-/ZrO2-TiO2 solid acid catalyst calcined at different temperatures on its surface properties and catalytic activity were thoroughly investigated in this paper. The physicochemical characteristics of prepared samples were determined by N2 adsorptiondesorption, XRD, NH3-TPD and XPS techniques, respectively. It was found that the crystallization temperature of the samples increased after the combination of ZrO2 and TiO2; and phase transformations from the anatase to the rutile of TiO2 species and the tetragonal to the monoclinic of ZrO2 species were effectively suppressed at higher temperature. The sample with a Zr/Ti molar ratio of 3/1 calcined at 450℃ showed the highest surface area and the most acid sites among all the tested samples. The acid site densities of samples were relatively closed to each other if they were calcined at the same temperature, however, decreased with the calcination temperature. The result indicates that the sulfur content in samples is a crucial factor to control the acid site density. Calcining the sample at 650℃ and higher temperatures resulted in a significant desorption of sulfate ion on the samples. The synthesized samples were evaluated as a potential catalyst for glucose conversion under the near-critical methanol conditions (200℃/4 MPa). The results suggested that the relatively weaker acid sites of the catalyst were more favorable for the accumulation of methyl glucosides, while the moderate acid sites were responsible for the formation of methyl levulinate. The catalytic activity for methyl levulinate production almost increases linearly with the catalyst acid site density. The catalyst deactivation is due to the loss of sulfate ion and the two catalysts with Zr/Ti molar ratios of 3/1 and 1/3 could effectively alleviate the deactivation caused by sulfate solution in the reaction medium and can be reused after calcination with the reuse rate of over 90% in terms of the methyl levulinate selectivity. 展开更多
关键词 SO42-/ZrO2-TiO2 surface properties catalysis glucose reactivity methyl levulinate
下载PDF
Quantum Dots Compete at the Acme of MXene Family for the Optimal Catalysis 被引量:4
12
作者 Yuhua Liu Wei Zhang Weitao Zheng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第10期36-82,共47页
It is well known that two-dimensional(2D)MXene-derived quan-tum dots(MQDs)inherit the excellent physicochemical properties of the parental MXenes,as a Chinese proverb says,“Indigo blue is extracted from the indigo pl... It is well known that two-dimensional(2D)MXene-derived quan-tum dots(MQDs)inherit the excellent physicochemical properties of the parental MXenes,as a Chinese proverb says,“Indigo blue is extracted from the indigo plant,but is bluer than the plant it comes from.”Therefore,0D QDs harvest larger surface-to-volume ratio,outstanding optical properties,and vigorous quantum confinement effect.Currently,MQDs trigger enormous research enthusiasm as an emerging star of functional materials applied to physics,chemistry,biology,energy conversion,and storage.Since the surface properties of small-sized MQDs include the type of surface functional groups,the functionalized surface directly determines their performance.As the Nobel Laureate Wolfgang Pauli says,“God made the bulk,but the surface was invented by the devil,”and it is just on the basis of the abundant surface functional groups,there is lots of space to be thereof excavated from MQDs.We are witnessing such excellence and even more promising to be expected.Nowadays,MQDs have been widely applied to catalysis,whereas the related reviews are rarely reported.Herein,we provide a state-of-the-art overview of MQDs in catalysis over the past five years,ranging from the origin and development of MQDs,synthetic routes of MQDs,and functionalized MQDs to advanced characterization techniques.To explore the diversity of catalytic application and perspectives of MQDs,our review will stimulate more efforts toward the synthesis of optimal MQDs and thereof designing high-performance MQDs-based catalysts. 展开更多
关键词 MXene Quantum dots catalysis surface groups STRUCTURE
下载PDF
Controllably tailoring external surface sites of nanosheet HZSM-5 for maximizing light olefins in catalytic cracking of n-decane 被引量:1
13
作者 Tiantian Zhu Hairui Liang +2 位作者 Bofeng Zhang Yajie Tian Guozhu Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第10期276-285,共10页
A series of triphenylethoxysilane(TPEOS)-modified nanosheet HZSM-5 catalysts(ZN-x,x=4%,8%and16%,mass)were synthesized by chemical liquid deposition to selectively change external acidity distributions.TPEOS modificati... A series of triphenylethoxysilane(TPEOS)-modified nanosheet HZSM-5 catalysts(ZN-x,x=4%,8%and16%,mass)were synthesized by chemical liquid deposition to selectively change external acidity distributions.TPEOS modification was found to passivate some external Br?nsted and Lewis acid sites by37.8%,in which Br?nsted acid sites(BAS)were found more easily sacrificed by breaking the surface Al AO bond of bridging hydroxyl groups and forming Si AOASi bonds.The selectivity of ZN-8 catalyst for light olefins(ethylene,propylene and butene)in n-decane catalytic cracking is up to 26%(450℃,WHSV=10.95 h^(-1)),which is ca.78%higher than that of parent one.The better performance was attributed to the appropriate external acid density in ZN-8,which inhibits bimolecular hydrogen transfer reaction of light olefins on the adjacent acid sites,resulting in more olefins,few coke precursors and thus an excellent catalytic stability. 展开更多
关键词 Nanosheet HZSM-5 Acid properties surface modification catalysis DEACTIVATION FIXED-BED
下载PDF
Surface coupling of methyl radicals for efficient low‐temperature oxidative coupling of methane 被引量:3
14
作者 Shihui Zou Zhinian Li +12 位作者 Qiuyue Zhou Yang Pan Wentao Yuan Lei He Shenliang Wang Wu Wen Juanjuan Liu Yong Wang Yonghua Du Jiuzhong Yang Liping Xiao Hisayoshi Kobayashi Jie Fan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第7期1117-1125,共9页
Selective coupling of methyl radicals to produce C_(2) species(C2H4 and C2H6)is a key challenge for oxidative coupling of methane(OCM).In traditional OCM reaction systems,homogeneous transformation of methyl radicals ... Selective coupling of methyl radicals to produce C_(2) species(C2H4 and C2H6)is a key challenge for oxidative coupling of methane(OCM).In traditional OCM reaction systems,homogeneous transformation of methyl radicals in O_(2)‐containing gases are uncontrollable,resulting in limited C_(2) selectivity and yield.Herein,we demonstrate that methyl radicals generated by La_(2)O_(3)at low reaction temperature can selectively couple on the surface of 5 wt%Na2WO4/SiO_(2).The controllable surface coupling against overoxidation barely changes the activity of La_(2)O_(3)but boosts the C_(2)selectivity by three times and achieves a C_(2)yield as high as 10.9%at bed temperature of only 570℃.Structure‐property studies suggest that Na_(2)WO_(4) nanoclusters are the active sites for methyl radical coupling.The strong CH_(3)·affinity of these sites can even endow some methane combustion catalysts with OCM activity.The findings of the surface coupling of methyl radicals open a new direction to develop OCM catalyst.The bifunctional OCM catalyst system,which composes of a methane activation center and a CH_(3)·coupling center,may deliver promising OCM performance at reaction temperatures below the ignition temperature of C2H6 and C2H4(~600℃)and is therefore more controllable,safer,and certainly more attractive as an actual process. 展开更多
关键词 Oxidative coupling of methane Bifunctional catalysis Methyl radicals surface coupling La_(2)O_(3) Na_(2)WO_(4)/SiO_(2)
下载PDF
NH_3 Plasma Surface Treatments of Engineering Fluoropolymers: A Way to Enhance Adhesion of Ni or Cu Thin Films Deposited by Electroless Plating 被引量:5
15
作者 Maurice Romand Marlene Charbonnier Yves Goepfert 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第05B期1092-1097,共6页
This paper describes the electroless Ni or Cu plating of some fiuoropolymer substrates through a tin-free activation process. Materials subjected to surface metallization are commercial Teflon() FEP, Nafion(), ACLAR()... This paper describes the electroless Ni or Cu plating of some fiuoropolymer substrates through a tin-free activation process. Materials subjected to surface metallization are commercial Teflon() FEP, Nafion(), ACLAR() and LaRCTM-CP1 thin films which have recently gained a large scientific and technological interest due to their excellent thermal, chemical, mechanical and dielectric properties. The original approach implemented in the present work involves: (i)the grafting of nitrogen-containing functionalities on the polymer surfaces through plasma treatments in ammonia, (ii) the direct catalysis of the so-modified surfaces via their immersion in a simple acidic PdCl2 solution (i.e. without using a prior surface sensitization in an acidic SnCl2 solution), and finally (iii) the electroless metallization itself. However, prior to the immersion in the industrial plating baths, the chemical reduction of the Pd+2 species (species covalently tethered on the nitrogen-containing groups) to metallic palladium (PdO) is shown to be a key factor in catalyzing the electroless deposition initiation. This is made by immersion in an hypophosphite (H2PO2-) solution. Wettability measurements and X-ray photoelectron spectroscopy (XPS) experiments are used to characterize every surface modification step of the developed process. A cross-hatch tape test was used to asses the adhesion strength of the electroless films that is shown qualitatively good. In addition, a fragmentation test was developed in combination with electrical measurements. Its use allows to distinguish different adhesion levels at the metal/polymer interface and to evidence the influence of some processing parameters. 展开更多
关键词 镍化学镀层 铜化学镀层 等离子表面处理 表面催化 XPS 剥离试验
下载PDF
Surface Coordination Decouples Hydrogenation Catalysis on Supported Metal Catalysts 被引量:1
16
作者 Qingyuan Wu Wenting Zhou +4 位作者 Hui Shen Ruixuan Qin Qiming Hong Xiaodong Yi Nanfeng Zheng 《CCS Chemistry》 CSCD 2023年第5期1215-1224,共10页
Supported metal catalysts integrating advantages of catalytic hydrogenation and stoichiometric reduction are highly desirable for the green production of fine chemicals.Decoupling catalytic hydrogenation into H_(2)act... Supported metal catalysts integrating advantages of catalytic hydrogenation and stoichiometric reduction are highly desirable for the green production of fine chemicals.Decoupling catalytic hydrogenation into H_(2)activation and selective reduction taking place at different locations is expected to provide an effective strategy to fabricate such catalyst systems.Herein,we report a decoupled hydrogenation system by modifying Pt catalysts supported on reducible In2O3 with ethylenediamine(EDA).The system exhibits good catalytic performance in oximes production from nitroalkanes,an industrially important reaction,by employing H_(2).Systematic studies demonstrate that the surface coordination of EDA on Pt is crucial to passivate the Pt surface from nitro hydrogenation without inhibiting H_(2)activation.The activated H_(2)species can then transfer and reduce the In_(2)O_(3)support in situ to generate sustainable stoichiometric reducing agents for the chemoselective reduction of nitroalkanes.Based upon the mechanistic understanding,a sustainable strategy for the production of oximes has been successfully fabricated. 展开更多
关键词 hydrogenation catalysis surface coordination reducible support selective hydrogenation of nitro compounds heterogeneous catalysis
原文传递
Coherent Resonance for Rate Oscillations During CO Oxidation on Pt(110) Surfaces: Interplay Between Internal and External Noise
17
作者 Juan Ma Zhong-huai Hou Hou-wen Xin 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2008年第4期339-345,共7页
Effects of noise on rate oscillations during CO oxidation on Pt(110) surface were investigated, both theoretically and numerically, by focusing on the interplay of internal noise (IN) due to stochasticity in react... Effects of noise on rate oscillations during CO oxidation on Pt(110) surface were investigated, both theoretically and numerically, by focusing on the interplay of internal noise (IN) due to stochasticity in reaction events, and external noise (EN) resulting from parameter perturbation. The surface is divided into cells of variable size which are assumed to be well mixed, and we consider the behavior inside a single cell. Attention is paid to parameter regions subthreshold of the deterministic Hopf bifurcation, where noise can induce stochastic oscillations, the signal-to-noise ratio (SNR) of which shows a maximum with the variation of noise intensity, known as coherent resonance (CR). By stochastic normal theory, we show that IN and EN contribute in a weighted additive way to an effective noise that lead to CR, such that SNR shows a ridge shape in the D-1/√N plane, where D and 1/√N measures the strength of EN and IN, respectively. It is shown that for too large IN (EN), CR behavior with EN (IN) no longer exists. Numerical simulations show good agreements with the theoretical results. 展开更多
关键词 FLUCTUATION Oscillation Coherent resonance surface catalysis
下载PDF
Surface Engineered Ru_(2)Ni Multilayer Nanosheets for Hydrogen Oxidation Catalysis 被引量:1
18
作者 Juntao Zhang Xing Fan +5 位作者 Suling Wang Maofeng Cao Lingzheng Bu Yong Xu Haiping Lin Xiaoqing Huang 《CCS Chemistry》 CSCD 2023年第8期1931-1941,共11页
The hydrogen oxidation reaction(HOR)in alkaline conditions is of great importance for the application of anion exchange membrane fuel cells(AEMFCs).However,the electrocatalysts for alkaline HOR generally suffer from t... The hydrogen oxidation reaction(HOR)in alkaline conditions is of great importance for the application of anion exchange membrane fuel cells(AEMFCs).However,the electrocatalysts for alkaline HOR generally suffer from the disadvantage of sluggish kinetics.Herein,we have fabricated Ru2Ni multilayered nanosheets(Ru2Ni MLNSs)in the layer-by-layer manner and engineered the surface properties via postannealing for efficient alkaline HOR.Detailed investigations reveal that such annealing at different temperatures can alter the surface properties of Ru2Ni MLNSs and thus regulate their adsorption abilities toward*H and*OH.In particular,the optimal catalyst exhibits a mass activity of 4.34 A mgRu−1 at an overpotential of 50 mV,which is 18.1 and 13.2 times higher than those of Ru/C(0.24 A mgRu−1)and Pt/C(0.33 A mgPt−1),respectively.Theoretical calculations indicate that the presence of surface O atoms can facilitate the HOR activity while the excessive coverage of O atoms on Ru2Ni surface leads to the strengthened H binding and the decay of HOR activity.This work not only provides an efficient catalyst for alkaline HOR,but it also may shed new light on the design of high-performance catalysts for electrocatalysis and beyond.We have fabricated Ru2Ni multilayer nanosheets(Ru2Ni MLNSs)and realized the surface engineering via an annealing process.Detailed investigations show that such surface engineering can regulate the surface properties and thus promote the alkaline HOR activity.Consequently,the optimal catalyst exhibits a much higher activity than those of commercial Ru/C and Pt/C and is a promising catalyst for alkaline HOR. 展开更多
关键词 surface engineering Ru2Ni multilayered nanosheet SYNERGY surface O atom hydrogen oxidation catalysis
原文传递
Novel synthesis of nickel oxide microsphere with high surface area and its catalytic application for carbon dioxide reforming of methane
19
作者 吴旭 武正簧 +1 位作者 安霞 谢鲜梅 《Journal of Central South University》 SCIE EI CAS 2014年第5期1747-1751,共5页
Nickel oxide(NiO)microsphere with a large surface area was novelly synthesized through nickel bicarbonate(Ni(HCO3)2)precursor.The obtained nickel oxide(NiO)microsphere was characterized by X-ray pattern diffraction,sc... Nickel oxide(NiO)microsphere with a large surface area was novelly synthesized through nickel bicarbonate(Ni(HCO3)2)precursor.The obtained nickel oxide(NiO)microsphere was characterized by X-ray pattern diffraction,scanning electron microscopy,CO2 temperature-programmed desorption,H2 temperature-programmed reduction,N2 adsorption/desorption and laser scattering particle size distribution analyzer.It was found that nickel oxide(NiO)synthesized by the thermal decomposition of Ni(HCO3)2through area hydrolysis,presented very nice microsphere with high surface area.The catalytic properties of obtained nickel oxide(NiO)microsphere were studied in the reaction of carbon dioxide reforming of methane where 91.3% conversion of CH4 with 93% conversion of CO2 was observed.Besides,the catalyst maintained high stability over 200 h on the stream. 展开更多
关键词 SYNTHESIS NiO microsphere large surface area catalysis
下载PDF
Skyrmion-Like Solitons, Topological Quasi-Positroniums, and Soliton-Catalytic Effects in Graphite-Potassium Intercalation Compounds and Metal Surfaces
20
作者 Ikuzo Kanazawa Makoto Saito +1 位作者 Tomoaki Sasaki Erika Imai 《Journal of Modern Physics》 2014年第15期1483-1488,共6页
We have analyzed the narrow components in the positron annihilation angular correlation spectra of graphite-potassium intercalation with the theoretical formula, which is extended from “topological quasi-positronium... We have analyzed the narrow components in the positron annihilation angular correlation spectra of graphite-potassium intercalation with the theoretical formula, which is extended from “topological quasi-positronium” model and discusses the relation to the catalytic activity of hydrogens. One mechanism of the soliton-catalytic effect is proposed. 展开更多
关键词 Model of surface Chemical Reactions catalysis ALKALI Metal POSITRON POSITRON ANNIHILATION
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部