期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Surface Water Resources' Response to Climate Changes in Jilin Province
1
作者 CAI Zhe1,2,TAN Gui-rong2,SUN Li3,QU Jing-hua3 1.Jinan Meteorological Bureau,Jinan 250002,China 2.Key Laboratory of Meteorological Disaster of Ministry of Education,Nanjing University of Information Science & Engineering,Nanjing 210044,China 3.Jilin Meteorological Scientific Research Institute,Changchun 130062,China 《Meteorological and Environmental Research》 CAS 2011年第7期53-56,65,共5页
[Objective] The response of surface water resources on climate changes was studied.[Method] By dint of monthly average temperature and precipitation in 45 meteorological stations in Jilin Province from 1960 to 2000,mo... [Objective] The response of surface water resources on climate changes was studied.[Method] By dint of monthly average temperature and precipitation in 45 meteorological stations in Jilin Province from 1960 to 2000,monthly runoff in 56 hydrological stations in Songhuajiang and Liaohe region,the surface runoff change and the response of surface water resources to climate change in 41 years were expounded.[Result] The runoff of Songliao region was limited during 1960s and 1970s.It began to increase slowly in the early 1980s.Since 1990s,there were distinct fluctuation of annual runoff and it was decreasing in general.EOF analysis suggested that the runoff of Songliao region was decreasing gradually from south to the north.The central gradient was small and runoff was evenly distributed.MK test result showed that the annual runoff in Songliao region had large fluctuation before 1980s and after 1990s.The response of surface runoff on climate and precipitation changes in Jilin Province was distinct and had strong relevance as well as certain lagging.Based on the analysis of the relation of rivers runoff and meteorological elements changes,statistics forecast model between river surface runoff and meteorological elements was constructed.Runoff prediction value and measured value had good relation.The corresponding river surface runoff changes can be assessed based on the changes of meteorological elements.[Conclusion] The study provided theoretical basis for the development and utilization of surface water resources in Jilin. 展开更多
关键词 surface water resources Climate changes RESPONSE Jilin China
下载PDF
A study on the conjugate water use between problematic surface water and groundwater resources of Jeoncheon basin Korea
2
《Global Geology》 1998年第1期117-118,共2页
关键词 A study on the conjugate water use between problematic surface water and groundwater resources of Jeoncheon basin Korea
下载PDF
Influencing factors of water resources in the source region of the Yellow River 被引量:7
3
作者 CHANG Guogang LI Lin +3 位作者 ZHU Xide WANG Zhenyu XIAO Jianshe LI Fengxia 《Journal of Geographical Sciences》 SCIE CSCD 2007年第2期131-140,共10页
Taking the source region of the Yellow River as a study area and based on the data from Madoi Meteorological Station and Huangheyan Hydrological Station covering the period 1955-2005, this paper analyses the changing ... Taking the source region of the Yellow River as a study area and based on the data from Madoi Meteorological Station and Huangheyan Hydrological Station covering the period 1955-2005, this paper analyses the changing trends of surface water resources, climate and frozen ground and reveals their causes. Results show that there exist frequent fluctuations from high to low water flow in the 51-year period. In general, the discharge has shown a de- clining trend in the 51 years especially since the 1990s. The annual distribution shows one peak which, year on year is getting smaller. (1) Precipitation has a significant and sustained influence on discharge. (2) A sharp rise of temperature resulted in the increase of evaporation and the decrease of discharge, which has a greater effect than on ice-snow melting. (3) Frozen ground tends to be degraded markedly. There is a significant positive correlation be- tween the permafrost thickness and the discharge. (4) Evaporation rates are significantly increasing, leading to the decrease of discharge. 70% of the discharge reduction resulted from climate change, and the remaining 30% may have been caused by human activities. 展开更多
关键词 surface water resources climate change frozen ground the source region of the Yellow River
下载PDF
Surface water resource attenuation attribution and patterns in Hai River Basin
4
作者 Qingming WANG Yong ZHAO +5 位作者 Hao WANG Jiaqi ZHAI Yue ZHANG Fan HE Rong LIU Mengyang MA 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第5期1545-1560,共16页
From 1956 to 2016,Hai River Basin suffered the most severe surface water resource attenuation among the 10 first-class river basins in China.Based on the surface water circulation process,and evolving characteristics ... From 1956 to 2016,Hai River Basin suffered the most severe surface water resource attenuation among the 10 first-class river basins in China.Based on the surface water circulation process,and evolving characteristics of precipitation and underlying surface in Hai River Basin,this study attributed the causes of surface water resource attenuation to six primary impact factors,analyzed each factor's quantitative contribution,and revealed four patterns of surface water resource attenuation in Hai River Basin.The pattern of the dominant factor:comparing the 1980–2000 period with the 1956–1979period,the variation of precipitation is the dominant factor of which contribution is 7 billion m^(3),accounting for 59%of total11.7 billion m^(3);comparing the 2001–2016 period with the 1956–1979 period,the increasing of vegetation cover in mountainous area is the dominant factor of which contribution is 2.78 billion m3,accounting for 51%of total 4.9 billion m^(3).The pattern of spatial distributions:comparing the 2001–2016 period with the 1956–1979 period,mountainous areas were more affected by increasing vegetation cover which for example contributed 42%in Luan River Basin mountainous;the plains were more impacted by farmland ridge interception which for example contributed 51%in Beisi River Basin plains.The pattern of attenuation trend:comparing the 2001–2016 period with the 1980–2000 period,surface water resources in mountainous areas continued to decline,owing to the increasing water consumption of large-scale vegetation restoration,while the influence of the underlying surface changes on surface water resources in plains areas tended to remain stable.The pattern of reversible change:among factors led to surface water resource attenuation,the human activity,including vegetation cover increase,farmland ridge interception,and urbanization expansion,contributed 36%of the attenuation,which resulted in the variation of precipitation-runoff relation.This study improved the traditional attribution classification model of climate change and human activity and analyzed the causes and contributions of water resource attenuation in Hai River Basin based on the water circulation process,which can provide scientific support for the development of water resource management in the basin. 展开更多
关键词 Hai River Basin surface water resources Contribution decomposition Quantitative contribution Attenuation patterns
原文传递
Response of water resources to climate change and its future trend in the source region of the Yangtze River 被引量:8
5
作者 LlLin SHEN Hongyan +2 位作者 DAI Sheng LI Hongmei XIAO Jianshe 《Journal of Geographical Sciences》 SCIE CSCD 2013年第2期208-218,共11页
In this paper, variations of surface water flow and its climatic causes in China are analyzed using hydrological and meteorological observational data, as well as the impact data set (version 2.0) published by the N... In this paper, variations of surface water flow and its climatic causes in China are analyzed using hydrological and meteorological observational data, as well as the impact data set (version 2.0) published by the National Climate Center in November 2009. The results indicate that surface water resources showed an increasing trend in the source region of the Yangtze River over the past 51 years, especially after 2004. The trend was very clearly shown, and there were quasi-periods of 9 years and 22 years, where the Tibetan Plateau heating field enhanced the effect, and the plateau monsoon entered a strong period. Precipitation notably increased, and glacier melt water increased due to climate change, all of which are the main climatic causes for increases in water resources in the source region. Based on global climate model prediction, in the SRESA1B climate change scenarios, water resources are likely to increase in this region for the next 20 years. 展开更多
关键词 climate change surface water resource temperature heating field MONSOON climate model thesource region of the Yangtze River
原文传递
Geomorphology and Hydrology of the Benin Region, Edo State, Nigeria
6
作者 Catherine Imhangulaya Ikhile 《International Journal of Geosciences》 2016年第2期144-157,共14页
This paper examines the geomorphology and hydrology of the Benin Region, Edo State, Nigeria. The major landform features and processes of the region are highlighted. This region is a strategic and significant landscap... This paper examines the geomorphology and hydrology of the Benin Region, Edo State, Nigeria. The major landform features and processes of the region are highlighted. This region is a strategic and significant landscape in Nigeria. Information was gathered on the various aspects of the landscape, including the Geology, Physiography (Relief) and Geomorphology, Geomorphic processes, Weathering, Drainage processes, Landforms, Surface Water Hydrology and Water Resources. The Benin Region is underlained by sedimentary formation of the South Sedimentary Basin. The geology is generally marked by top reddish earth, composed of ferruginized or literalized clay sand. Geologically, the Benin Region comprises of 1) the Benin formation;2) alluvium;3) drift/top soil and 4) Azagba-Ogwashi (Asuba-Ogwashi) formation. Several parts of the region are surrounded by the Benin historical moats. The region has been described as a tilled plain in the south western direction. The local relief of the region is 91 m. Boreholes records in the Benin Region show evidence of deep chemical weathering overtime. Soil profile reveals that the region is composed mainly of reddish brown sandy laterite. Intermittent layers of porous sands of sandy clays may reach a large depth as found in the borehole drilled in the region. These are products of deep chemical decay of the original parent rock materials. Three river systems drain the Benin Region. They are the Ikpoba River, the Ogba River and Owigie-Ogbovben River systems. The mean annual discharge of Ikpoba River for 1982-1983 and 1993-2002 was 1411 mm/yr, which was 1.019 × 10<sup>9</sup> m<sup>3</sup> with a mean annual baseflow of 1256.23 mm (0. 907 × 109 m<sup>3</sup>). This constitutes 87.65% of the total flow. It has a mean annual surface runoff of 225.18 mm (0.112 × 10<sup>9</sup> m<sup>3</sup>) or 24.4 % of the total discharge. The water resources of the region include surface water and underground water. 展开更多
关键词 Geology Physiography (Relief) and Geomorphology Geomorphic Processes Weathering Drainage Processes LANDFORMS surface water Hydrology and water resources
下载PDF
Response of runoff to climate change and its future tendency in the source region of Yellow River 被引量:13
7
作者 Li Lin Shen Hongyan +2 位作者 Dai Sheng Xiao Jianshe Shi Xinghe 《Journal of Geographical Sciences》 SCIE CSCD 2012年第3期431-440,共10页
This study examines the hydrological and meteorological data of the source region of the Yellow River from 1956 to 2010 and future climate scenarios from regional climate model (PRECIS) during 2010-2020. Through ana... This study examines the hydrological and meteorological data of the source region of the Yellow River from 1956 to 2010 and future climate scenarios from regional climate model (PRECIS) during 2010-2020. Through analyzing the flow variations and revealing the climate causes, it predicts the variation trend for future flows. It is found that the annual mean flow showed a decreasing trend in recent 50 years in the source region of the Yellow River with quasi-periods of 5a, 8a, 15a, 22a and 42a; the weakened South China Sea summer monsoon induced precipitation decrease, as well as evaporation increase and frozen soil degeneration in the scenario of global warming are the climate factors, which have caused flow decrease. Based on the regional climate model PRECIS prediction, the flows in the source region of the Yellow River are likely to decrease generally in the next 20 years. 展开更多
关键词 climate change surface water resource MONSOON frozen soil climate model source region of the Yellow River
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部