The first pandemic wave of coronavirus disease 2019(COVID-19)induced a considerable increase in several antivirals and antibiotics in surface water.The common symptoms of COVID-19 are viral and bacterial infections,wh...The first pandemic wave of coronavirus disease 2019(COVID-19)induced a considerable increase in several antivirals and antibiotics in surface water.The common symptoms of COVID-19 are viral and bacterial infections,while comorbidities(e.g.,hypertension and diabetes)and mental shock(e.g.,insomnia and anxiety)are nonnegligible.Nevertheless,little is known about the long-term impacts of comorbidities and mental shock on organic micropollutants(OMPs)in surface waters.Herein,we monitored 114 OMPs in surface water and wastewater treatment plants(WWTPs)in Wuhan,China,between 2019 and 2021.The pandemic-induced OMP pollution in surface water was confirmed by significant increases in 26 OMP concentrations.Significant increases in four antihypertensives and one diabetic drug suggest that the treatment of comorbidities may induce OMP pollution.Notably,cotinine(a metabolite of nicotine)increased 155 times to 187 ngL1,which might be associated with increased smoking.Additionally,the increases in zolpidem and sulpiride might be the result of worsened insomnia and depression.Hence,it is reasonable to note that mental-health protecting drugs/behavior also contributed to OMP pollution.Among the observed OMPs,telmisartan,lopinavir,and ritonavir were associated with significantly higher ecological risks because of their limited WWTP-removal rate and high ecotoxicity.This study provides new insights into the effects of comorbidities and mental shock on OMPs in surface water during a pandemic and highlights the need to monitor the fate of related pharmaceuticals in the aquatic environment and to improve their removal efficiencies in WWTPs。展开更多
As a typical region with high water demand for agricultural production,understanding the spatiotemporal surface water changes in Northeast China is critical for water resources management and sustainable development.H...As a typical region with high water demand for agricultural production,understanding the spatiotemporal surface water changes in Northeast China is critical for water resources management and sustainable development.However,the long-term variation characteristics of surface water of different water body types in Northeast China remain rarely explored.This study investigated how surface water bodies of different types(e.g.,lake,reservoir,river,coastal aquaculture,marsh wetland,ephemeral water) changed during1999–2020 in Northeast China based on various remote sensing-based datasets.The results showed that surface water in Northeast China grew dramatically in the past two decades,with an equivalent area increasing from 24 394 km^(2) in 1999 to 34 595 km^(2) in 2020.The surge of ephemeral water is the primary driver of surface water expansion,which could ascribe to shifted precipitation pattern.Marsh wetlands,rivers,and reservoirs experienced a similar trend,with an approximate 20% increase at the interdecadal scale.By contrast,coastal aquacultures and natural lakes remain relatively stable.This study is expected to provide a more comprehensive investigation of the surface water variability in Northeast China and has important practical significance for the scientific management of different types of surface water.展开更多
Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with comp...Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.展开更多
Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploi...Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploit two-dimensional image information.However,with the launch of the surface water ocean topography(SWOT)satellite on December 16,2022,a unique opportunity has emerged to capture wide-swath three-dimensional ISW-induced sea surface information.In this study,we examine ISWs in the Andaman Sea using data from the Ka-band Radar Interferometer(KaRIN),a crucial sensor onboard SWOT.KaRIN not only provides backscattering satellite images but also employs synthetic aperture interferometry techniques to retrieve wide-swath two-dimensional sea surface height measurements.Our observations in the Andaman Sea revealed the presence of ISWs characterized by dark-bright strips and surface elevation solitons.The surface soliton has an amplitude of 0.32 m,resulting in an estimation of ISW amplitude of approximately 60 m.In contrast to traditional two-dimensional satellite images or nadir-looking altimetry data,the SWOT mission’s capability to capture threedimensional sea surface information represents a significant advancement.This breakthrough holds substantial promise for ISW studies,particularly in the context of ISW amplitude inversion.展开更多
The Kandi basin is located in northeast Benin (West Africa). This study is focused on the estimation of water fluxes exchanged between the river Niger (and its tributaries) and the transboundary Iullemeden Aquifer Sys...The Kandi basin is located in northeast Benin (West Africa). This study is focused on the estimation of water fluxes exchanged between the river Niger (and its tributaries) and the transboundary Iullemeden Aquifer System. In that framework, an innovative approach based on the application of the Bayesian Mixing Model (MixSIAR) analysis on water isotopes (oxygen-18, deuterium and tritium) was performed. Moreover, to assess the relevance of the model outputs, Pearson’s correlation and Principal Component Analysis (PCA) have been done. A complex relationship between surface water and groundwater has been found. Sixty percent (60%) of groundwater samples are made of more than 70% river water and rainwater;while 31.25% of surface water samples are made of about 84% groundwater. To safeguard sustainable water resources for the well-being of the local communities, surface water and groundwater must be managed as a unique component in the Kandi basin.展开更多
To address the challenges of missed detections in water surface target detection using solely visual algorithms in unmanned surface vehicle(USV)perception,this paper proposes a method based on the fusion of visual and...To address the challenges of missed detections in water surface target detection using solely visual algorithms in unmanned surface vehicle(USV)perception,this paper proposes a method based on the fusion of visual and LiDAR point-cloud projection for water surface target detection.Firstly,the visual recognition component employs an improved YOLOv7 algorithmbased on a self-built dataset for the detection of water surface targets.This algorithm modifies the original YOLOv7 architecture to a Slim-Neck structure,addressing the problemof excessive redundant information during feature extraction in the original YOLOv7 network model.Simultaneously,this modification simplifies the computational burden of the detector,reduces inference time,and maintains accuracy.Secondly,to tackle the issue of sample imbalance in the self-built dataset,slide loss function is introduced.Finally,this paper replaces the original Complete Intersection over Union(CIoU)loss function with the Minimum Point Distance Intersection over Union(MPDIoU)loss function in the YOLOv7 algorithm,which accelerates model learning and enhances robustness.To mitigate the problem of missed recognitions caused by complex water surface conditions in purely visual algorithms,this paper further adopts the fusion of LiDAR and camera data,projecting the threedimensional point-cloud data from LiDAR onto a two-dimensional pixel plane.This significantly reduces the rate of missed detections for water surface targets.展开更多
Oil spills continue to generate various issues and concerns regarding their effect and behavior in the marine environment,owing to the related potential for detrimental environmental,economic and social implications.I...Oil spills continue to generate various issues and concerns regarding their effect and behavior in the marine environment,owing to the related potential for detrimental environmental,economic and social implications.It is essential to have a solid understanding of the ways in which oil interacts with the water and the coastal ecosystems that are located nearby.This study proposes a simplified model for predicting the plume-like transport behavior of heavy Bunker C fuel oil discharging downward from an acutely-angled broken pipeline located on the water surface.The results show that the spill overall profile is articulated in three major flow areas.The first,is the source field,i.e.,a region near the origin of the initial jet,followed by the intermediate or transport field,namely,the region where the jet oil flow transitions into an underwater oil plume flow and starts to move horizontally,and finally,the far-field,where the oil re-surface and spreads onto the shore at a significant distance from the spill site.The behavior of the oil in the intermediate field is investigated using a simplified injection-type oil spill model capable of mimicking the undersea trapping and lateral migration of an oil plume originating from a negatively buoyant jet spill.A rectangular domain with proper boundary conditions is used to implement the model.The Projection approach is used to discretize a modified version of the Navier-Stokes equations in two dimensions.A benchmark fluid flow issue is used to verify the model and the results indicate a reasonable relationship between specific gravity and depth as well as agreement with the aerial data and a vertical temperature profile plot.展开更多
Physicochemical parameters of surface water sources in the study of local government areas (LGAs) were assessed using standard procedures. The mean physicochemical parameters for pH (5.49), NO2 (0.23 mg/L), SO4 (0.77 ...Physicochemical parameters of surface water sources in the study of local government areas (LGAs) were assessed using standard procedures. The mean physicochemical parameters for pH (5.49), NO2 (0.23 mg/L), SO4 (0.77 mg/L), Na (28.72 mg/L), Ca (28.94 mg/L), Mg (17.50 mg/L), Cl (11.65 mg/L), TSS (6.27 mg/L), TDS (104.23 mg/L), BOD (2.83 mg/L) and F (0.87 mg/L) were below WHO standards irrespective of their defecation status. The values for electrical conductivity (EC) (2770.50 µs/cm, turbidity (481.24 NTU), dissolved oxygen (DO) (5.32 mg/L), chemical oxygen demand (COD) (445.50 mg/L), K (125.06 mg/L), PO4 (0.78 mg/L) and Fe (0.57 mg/L) were above the WHO limits for safe water. Higher EC and COD values obtained in the study is evidence of pollution of the water sources by organic matter.展开更多
Based on meteorological data collected over nearly 60 years(1960-2017)from four national meteorological stations along the margins of the Badain Jaran Desert,this study analyzed the spatiotemporal variations in evapor...Based on meteorological data collected over nearly 60 years(1960-2017)from four national meteorological stations along the margins of the Badain Jaran Desert,this study analyzed the spatiotemporal variations in evaporation from water surfaces and identified the dominant controlling factors.Methods used included linear trend analysis,linear tendency estimation,the departure method,the rank correlation coefficient-based method,and Multiple Linear Regression(MLR).Results indicate notable spatiotemporal differences in evaporation distribution and evolution.Spatially,average annual evaporation exhibited a pronounced altitude effect,decreasing at a rate of about 8.23 mm/m from east to west with increasing altitude.Temporally,annual evaporation showed significant upward trends after 1996 at the northeastern(Guaizi Lake)and western(Dingxin)margins,with rates of 132 mm/10a and 105 mm/10a,respectively.Conversely,along the northwestern(Ejina Banner)and southern(Alxa Right Banner)margins of the desert,an evaporation paradox was observed,with annual evaporation trending downward at rates of 162 mm/10a and 187 mm/10a,respectively,especially after 1987.The dominant factors controlling evaporation varied spatially:Average annual temperature and relative humidity influended the western margin(Dingxin),average annual temperature was the key factor for the northeastern margin(Guaizi Lake),and average wind speed was crucial for the northern(Ejina Banner)and southern(Alxa Right Banner)margins.展开更多
Objective: The main objective of this study was to assess the degree of contamination of surface waters by heavy metals and pesticides. Method: To this end, data were collected in December 2022 from four specific samp...Objective: The main objective of this study was to assess the degree of contamination of surface waters by heavy metals and pesticides. Method: To this end, data were collected in December 2022 from four specific sampling stations: Okpara, Térou, Affon and Adjiro. Levels of heavy metals, including cadmium, chromium, copper, iron, mercury, nickel and lead, were measured and subjected to in-depth statistical analysis using graphical summation models. In addition, the concentrations of pesticide active ingredients present in the samples were interpreted and evaluated. The statistical data collected during this study were processed using R software, version 3.5.0. Results: The values obtained at the different stations Okpara, Térou, Affon and Adjiro are respectively Arsenic (2 × 10<sup>-4</sup> mg/L;2.2 × 10<sup>-1</sup> mg/L;1.2 × 10<sup>-4</sup> mg/L;2 × 10<sup>-4</sup> mg/L), Cadmium (4.4 × 10<sup>-5</sup> mg/L;1.1 × 10<sup>-2</sup> mg/L;10<sup>-4</sup> mg/L;4 × 10<sup>-4</sup> mg/L). Then Copper (7 × 10<sup>-4</sup> mg/L;3 × 10<sup>-3</sup> mg/L;7 × 10<sup>-4</sup> mg/L;1 × 10<sup>-4</sup> mg/L), Iron (1.51 mg/L;6.4 × 10<sup>-1</sup> mg/L;2.0012 mg/L;2.9 × 10<sup>-1</sup> mg/L), Lead (0 mg/L;0 mg/L;1.5 × 10<sup>-3</sup> mg/L;1.5 × 10<sup>-3</sup> mg/L). Mercury, nickel and chromium were not detected in surface waters. It is important to note that the values obtained for trace metals (Cadmium, Chromium, Copper, Iron, Mercury, nickel and chromium were not detected in surface waters. It is important to note that the values obtained for trace metals (cadmium, chromium, copper, iron, mercury, nickel and lead) were all below the guideline standards set by the WHO in 2006 for uncontaminated surface waters. This indicates that the surface waters of the Upper Ouémé were below acceptable contamination thresholds in terms of heavy metals. However, the presence of pesticide active ingredients such as cyfluthrin, endosulfan-alpha, endosulfan-beta, profenosfos, tihan, atrazine, gala super and glycel clearly indicates that these surface waters are subject to agricultural contamination.展开更多
China’s first Mars rover,Zhurong,successfully landed in the south of Utopia Planitia.The surface water content at the landing area can provide constraints on mineral formation conditions and help us better understand...China’s first Mars rover,Zhurong,successfully landed in the south of Utopia Planitia.The surface water content at the landing area can provide constraints on mineral formation conditions and help us better understand the evolution of the Martian aqueous and geological environment.In this work,the surface kinetic temperature of the Zhurong landing area was derived by analyzing data from the Mars Express Observatoire pour la Minéralogie,l’Eau,les Glaces et l’Activité(OMEGA)spectrometer.Using the Discrete Ordinate Radiative Transfer(DISORT)model,we performed atmospheric correction and thermal correction for the OMEGA data to obtain the surface effective single-particle absorption thickness(ESPAT)parameter to evaluate the surface water content.The surface water content distribution at the landing area was relatively uniform at a lateral scale of~10 km.At the Zhurong landing site,the surface water content in the topmost layer(a few hundred micrometers)of the regolith was 5−8 weight percent water(wt%H_(2)O),assuming surface particle sizes of<45μm,or 1.6−2.5 wt%H_(2)O,assuming surface particle sizes in the range of 125−250μm.The Mars Surface Composition Detector(MarSCoDe)onboard Zhurong also observed significant H_(2)O/OH signals in the landing area.Our results provide an important regional context for the hydration state of the area and can be further verified by the H content derived from the Laser-Induced Breakdown Spectrometer(LIBS)data of MarSCoDe.展开更多
Antibiotics are widely used in the process of human medical treatment,livestock and poultry breeding,and aquaculture.With the excretion of urine and feces,they enter the water environment of human life and become an i...Antibiotics are widely used in the process of human medical treatment,livestock and poultry breeding,and aquaculture.With the excretion of urine and feces,they enter the water environment of human life and become an important source of water environment pollution.Antibiotic residues in the environment have high ecological and health risks.Through the pilot monitoring of antibiotics in the main stream of the Yangtze River,Chaohu Lake and the drinking water source of Hefei City,the current situation and impact of antibiotic pollution were analyzed.The results show that 32 kinds of antibiotics and their derivatives of the six major categories involved were detected to varying degrees,and the concentrations at some points reached 1.26μg/L.Finally,the prevention and control of antibiotic pollution in the surface water of the Yangtze River basin in a province of central China were summarized,and relevant suggestions were given.展开更多
The rivers draining from the Himalayan range distribute enormous amount of fresh water to the people living in downstream regions.Trace metals flowed with river water can lead to serious impact on ecological system an...The rivers draining from the Himalayan range distribute enormous amount of fresh water to the people living in downstream regions.Trace metals flowed with river water can lead to serious impact on ecological system and human health.Nevertheless,the documentation on trace elements of Himalayan rivers is inadequately documented.The current study deals with the spatial and temporal variability of the major and trace elements of Ganga river water in epirhithron,metarhithron and hyporhithron zone belonging to Himalayan segment.Water samples from nineteen monitoring locations were collected in pre-monsoon(May-June),monsoon(AugustSeptember)and post-monsoon(December)seasons and subjected to be assessed for 20 elements(Ag,Al,Ba,Cd,Ca,Cr,Cu,Fe,Ga,K,Mn,Mg,Na,Ni,Pb,Sr,Th,U,Zn,and Zr)using ICP-OES(Inductively Coupled Plasma-Optical Emission Spectrometer).Different water pollution indexes such as HPI(Heavy Metal Pollution Index),MI(Metal Index)and PI(Pollution Index)were used to describe current water quality status at each monitoring station under particular classified ecological zone.The studied stations in hyporhithron zone had the value of Metal Index(MI>1),indicating threshold of warning.Further,the highest values of HPI in hyporhithron zone correspond to poor water quality status.Sites with poor water quality were also found to be contaminated as per the Pollution Index(PI),exhibiting high concentrations for element(Fe).However,the epirhithron and metarhithron zone in Himalayan segment showed excellent water quality mainly contributed from natural sources.Cluster Analysis(CA)and Principal Component Analysis(PCA)were applied to identify the main influential sources for Ganga river water pollution.The Kriging interpolation method was also applied to prepare spatial distribution map of computed indexes(HPI,MI,and PI).With the help of index of local Moran’s I(LMI),identified spatial clusters and spatial outliers revealed the elevated concentration of most elements in hyporhithron zone.The dataset presented in this study would be convenient for government officials in developing more effective management policies and necessary steps to check and monitor the Ganga river water quality.It was also suggested that further investigations in terms of trace elemental sources and their role in self-purification properties of Ganga water can be addressed in future.展开更多
Subterranean estuaries(STEs)are characterized by the mixing of terrestrial fresh groundwater and seawater in coastal aquifers.Although microorganisms are important components of coastal groundwater ecosystems and play...Subterranean estuaries(STEs)are characterized by the mixing of terrestrial fresh groundwater and seawater in coastal aquifers.Although microorganisms are important components of coastal groundwater ecosystems and play critical roles in biogeochemical transformations in STEs,limited information is available about how their community dynamics interact with hydrological,geochemical and environmental characteristics in STEs.Here,we studied bacterial and archaeal diversities and distributions with 16S rRNA-based Illumina MiSeq sequencing technology between surface water and groundwater in a karstic STE.Principal-coordinate analysis found that the bacterial and archaeal communities in the areas where algal blooms occurred were significantly separated from those in other stations without algal bloom occurrence.Canonical correspondence analysis showed that nutrients and salinity can explain the patterns of bacterial and archaeal community dynamics.The results suggest that hydrological,geochemical and environmental characteristics between surface water and groundwater likely control the bacterial and archaeal diversities and distributions in STEs.Furthermore,we found that some key species can utilize terrestrial pollutants such as nitrate and ammonia in STEs,indicating that these species(e.g.,Nitrosopumilus maritimus,Limnohabitans parvus and Simplicispira limi)may be excellent candidates for in situ degradation/remediation of coastal groundwater contaminations concerned with the nitrate and ammonia.Overall,this study reveals the coupling relationship between the microbial communities and hydrochemical environments in STEs,and provides a perspective of in situ degradation/remediation for coastal groundwater quality management.展开更多
Owing to extensive construction of dams, the impact of backwater on flow may lead to navigation or flood control issues in curved channels. To date, the impact of backwater on the water surface profile in curved chann...Owing to extensive construction of dams, the impact of backwater on flow may lead to navigation or flood control issues in curved channels. To date, the impact of backwater on the water surface profile in curved channels remains unknown and requires investigation. In this study, experiments were conducted in a glass-walled recirculating flume with a length of 19.4 m, a width of 0.6 m, and a depth of 0.8 m, and the impact of backwater on the water surface profile in a 90° channel bend was investigated. The experimental results showed that the backwater degree had a significant impact on the transverse and longitudinal flow depth distributions in the bend. The transverse slope of the flow (Jr) increased linearly with an increase in the Froude number of the approach flow upstream of the bend. Jr increased with the longitudinal location parameter ξ when −0.2 < ξ < 0.5, and decreased with ξ when 0.5 < ξ < 1.2. Furthermore, the results showed that Jr asymptotically decreased to zero with an increase in the degree of backwater. An equation was formulated to estimate the transverse slope of the flow in a 90° bend in backwater zones.展开更多
Arsenic,barium,bismuth,cadmium,cesium,chromium,cobalt,copper,iron,lead,manganese,molybdenum,nickel,strontium,thallium,tungsten,uranium,vanadium,and zinc concentrations were investigated in forty-two groundwater sample...Arsenic,barium,bismuth,cadmium,cesium,chromium,cobalt,copper,iron,lead,manganese,molybdenum,nickel,strontium,thallium,tungsten,uranium,vanadium,and zinc concentrations were investigated in forty-two groundwater samples,twenty-four surface water and six surface sediment samples in Kinsevere industrial zone and its surroundings in February and march 2017,January,February and March 2018 to evaluate the potential human health risk.Chemical analyses were carried out by using ICP-SF-MS(Inductively Coupled Plasma-Sector Field Mass Spectrometry,Thermo Scientific Element II).The trace metals were detected at various concentrations in all the analyzed samples.Pb,Mn and Fe concentrations exceeded the European Union acceptable maximum limits for water intended for human consumption in 4.76%,28.57%and 61.90%of the groundwater samples,respectively and in 0%,50%and 100%of the surface water samples,respectively.As,Cr,Cu and Ni concentrations exceeded the recommended lower sediment quality guideline values in 33.33%,50%,83.33%and 83.33%of the surface sediment samples,respectively.All those elevated trace metal concentrations in the groundwater,surface water and sediments represent a risk for the health of local population as well as for aquatic organisms.展开更多
In view of the fact that cages and bait are not allowed in large water surface aquiculture,1-2 kinds of new green feeds"plankton+microecologics"were developed to solve the problems of yield reduction,slow gr...In view of the fact that cages and bait are not allowed in large water surface aquiculture,1-2 kinds of new green feeds"plankton+microecologics"were developed to solve the problems of yield reduction,slow growth and difficulty in fishing of aquatic organisms caused by extensive mode.The new green feed is ecological,environmentally friendly and residue-free,which not only supplements nutrition but also meets the requirements of environmental protection.展开更多
A study aimed at evaluating the physicochemical and bacteriological quality of surface water was therefore carried out in a few watercourses in the municipality of Mbankomo, located in the Center Region (Cameroon). Th...A study aimed at evaluating the physicochemical and bacteriological quality of surface water was therefore carried out in a few watercourses in the municipality of Mbankomo, located in the Center Region (Cameroon). The physico-chemical parameters were measured according to the standard method. The organic pollution index (OPI) was determined from the contents of nitrates, phosphates, and ammoniacal nitrogen to characterize the level of organic pollution of the water. The microorganisms sought were total flora, indicators of faecal contamination like total coliforms, faecal coliforms, feacal streptococci and Escherichia coli, as well as the species Clostridium perfringens. The organic pollution index indicates a high-level organic pollution level during the small rainy season and high to moderate during the small dry season. High concentrations of the total and fecal coliforms, streptococci fecal, Escherichia coli and Clostridium perfringens respectively of 1712 × 10<sup>5</sup> CFU/100mL;82 × 10<sup>5</sup> CFU/100mL;10 × 10<sup>5</sup> CFU/100mL;27 × 10<sup>5</sup> and 40 × 10<sup>3</sup> CFU/100mL, all higher than WHO standards, indicate that the waterways of Mbankomo are subject to feacal pollution and harbor pathogenic microflora. The cell densities of main bacteria were significantly correlated with main abiotic parameters, such as Escherichia coli, which was significantly correlated with the pH of the water (r = 0.35;p < 0.05). The variation of organic pollution index category means correspond to a high level of organic pollution during the small rainy season and a high to moderate level during the small dry season. The deterioration of the quality of these waters is favored by their proximity to sources of pollution (toilets, plantation), the runoff of the waters contaminated, the use of detergents and wrong maintenance. These waters without any treatment are not recommendable for human consumption according to standards of the World Health Organization.展开更多
The Berg River Catchment based in the Western Cape Province,South Africa services the greater Cape Town area with water,subsequent to supplying the vast agricultural activities that exist in the middle and the lower r...The Berg River Catchment based in the Western Cape Province,South Africa services the greater Cape Town area with water,subsequent to supplying the vast agricultural activities that exist in the middle and the lower reaches.This study thus investigates the hydrogeochemical interactions between surface and groundwater in the Berg River Catchment with the aim of establishing trends and transfer of constituents between the surface and groundwater systems,investigates the role that geology plays in water chemistry as well as identifies the geochemical processes controlling surface and groundwater chemistry in the catchment.This study was carried out using three types of research designs namely i)experimental research design;ii)field research design and meta-analysis research design.Furthermore,the study made use of hydrochemical data ranging from 2003 to 2013 obtained from the National Water Monitoring Database owned and maintained by the Department of Water and Sanitation and data that were sampled in 2016 by authors and analyzed using the ICP-MS Technique Ground Water Chart,Arc-GIS and Geosoft(Oasis Montaj)were further employed to model the data.The results indicated that:i)in the Upper Berg there is not much interaction and transfer of constituents between surface and groundwater;ii)the Middle Berg,however,indicated a degree of interaction with the sharing of constituents between the two water systems and iii)the Lower Berg indicated only NaCl water type also noting that the area situated near the river mouth whereby there is the mixing of river and seawater.展开更多
Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims t...Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms.展开更多
基金supported by the National Natural Science Foundation of China(52221004,52091542,and 51820105011)the Scientific Research Project of China Three Gorges Corporation(201903139)the Research Fund of Vanke School of Public Health(2021JC009),Tsinghua University.
文摘The first pandemic wave of coronavirus disease 2019(COVID-19)induced a considerable increase in several antivirals and antibiotics in surface water.The common symptoms of COVID-19 are viral and bacterial infections,while comorbidities(e.g.,hypertension and diabetes)and mental shock(e.g.,insomnia and anxiety)are nonnegligible.Nevertheless,little is known about the long-term impacts of comorbidities and mental shock on organic micropollutants(OMPs)in surface waters.Herein,we monitored 114 OMPs in surface water and wastewater treatment plants(WWTPs)in Wuhan,China,between 2019 and 2021.The pandemic-induced OMP pollution in surface water was confirmed by significant increases in 26 OMP concentrations.Significant increases in four antihypertensives and one diabetic drug suggest that the treatment of comorbidities may induce OMP pollution.Notably,cotinine(a metabolite of nicotine)increased 155 times to 187 ngL1,which might be associated with increased smoking.Additionally,the increases in zolpidem and sulpiride might be the result of worsened insomnia and depression.Hence,it is reasonable to note that mental-health protecting drugs/behavior also contributed to OMP pollution.Among the observed OMPs,telmisartan,lopinavir,and ritonavir were associated with significantly higher ecological risks because of their limited WWTP-removal rate and high ecotoxicity.This study provides new insights into the effects of comorbidities and mental shock on OMPs in surface water during a pandemic and highlights the need to monitor the fate of related pharmaceuticals in the aquatic environment and to improve their removal efficiencies in WWTPs。
基金Under the auspices of Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA28020503,XDA23100102)National Key Research and Development Program of China(No.2019YFA0607101)+1 种基金Project of China Geological Survey(No.DD20230505)Excellent Scientific Research and Innovation Team of Universities in Anhui Province(No.2023AH010071)。
文摘As a typical region with high water demand for agricultural production,understanding the spatiotemporal surface water changes in Northeast China is critical for water resources management and sustainable development.However,the long-term variation characteristics of surface water of different water body types in Northeast China remain rarely explored.This study investigated how surface water bodies of different types(e.g.,lake,reservoir,river,coastal aquaculture,marsh wetland,ephemeral water) changed during1999–2020 in Northeast China based on various remote sensing-based datasets.The results showed that surface water in Northeast China grew dramatically in the past two decades,with an equivalent area increasing from 24 394 km^(2) in 1999 to 34 595 km^(2) in 2020.The surge of ephemeral water is the primary driver of surface water expansion,which could ascribe to shifted precipitation pattern.Marsh wetlands,rivers,and reservoirs experienced a similar trend,with an approximate 20% increase at the interdecadal scale.By contrast,coastal aquacultures and natural lakes remain relatively stable.This study is expected to provide a more comprehensive investigation of the surface water variability in Northeast China and has important practical significance for the scientific management of different types of surface water.
基金This research was supported by the Third Xinjiang Scientific Expedition Program(2021xjkk010102)the National Natural Science Foundation of China(41261047,41761043)+1 种基金the Science and Technology Plan of Gansu Province,China(20YF3FA042)the Youth Teacher Scientific Capability Promoting Project of Northwest Normal University,Gansu Province,China(NWNU-LKQN-17-7).
文摘Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.
基金Supported by the National Key Research and Development Program of China(No.2022YFE0204600)the National Natural Science Foundation for Young Scientists of China(No.41906157)。
文摘Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploit two-dimensional image information.However,with the launch of the surface water ocean topography(SWOT)satellite on December 16,2022,a unique opportunity has emerged to capture wide-swath three-dimensional ISW-induced sea surface information.In this study,we examine ISWs in the Andaman Sea using data from the Ka-band Radar Interferometer(KaRIN),a crucial sensor onboard SWOT.KaRIN not only provides backscattering satellite images but also employs synthetic aperture interferometry techniques to retrieve wide-swath two-dimensional sea surface height measurements.Our observations in the Andaman Sea revealed the presence of ISWs characterized by dark-bright strips and surface elevation solitons.The surface soliton has an amplitude of 0.32 m,resulting in an estimation of ISW amplitude of approximately 60 m.In contrast to traditional two-dimensional satellite images or nadir-looking altimetry data,the SWOT mission’s capability to capture threedimensional sea surface information represents a significant advancement.This breakthrough holds substantial promise for ISW studies,particularly in the context of ISW amplitude inversion.
文摘The Kandi basin is located in northeast Benin (West Africa). This study is focused on the estimation of water fluxes exchanged between the river Niger (and its tributaries) and the transboundary Iullemeden Aquifer System. In that framework, an innovative approach based on the application of the Bayesian Mixing Model (MixSIAR) analysis on water isotopes (oxygen-18, deuterium and tritium) was performed. Moreover, to assess the relevance of the model outputs, Pearson’s correlation and Principal Component Analysis (PCA) have been done. A complex relationship between surface water and groundwater has been found. Sixty percent (60%) of groundwater samples are made of more than 70% river water and rainwater;while 31.25% of surface water samples are made of about 84% groundwater. To safeguard sustainable water resources for the well-being of the local communities, surface water and groundwater must be managed as a unique component in the Kandi basin.
基金supported by the National Natural Science Foundation of China(No.51876114)the Shanghai Engineering Research Center of Marine Renewable Energy(Grant No.19DZ2254800).
文摘To address the challenges of missed detections in water surface target detection using solely visual algorithms in unmanned surface vehicle(USV)perception,this paper proposes a method based on the fusion of visual and LiDAR point-cloud projection for water surface target detection.Firstly,the visual recognition component employs an improved YOLOv7 algorithmbased on a self-built dataset for the detection of water surface targets.This algorithm modifies the original YOLOv7 architecture to a Slim-Neck structure,addressing the problemof excessive redundant information during feature extraction in the original YOLOv7 network model.Simultaneously,this modification simplifies the computational burden of the detector,reduces inference time,and maintains accuracy.Secondly,to tackle the issue of sample imbalance in the self-built dataset,slide loss function is introduced.Finally,this paper replaces the original Complete Intersection over Union(CIoU)loss function with the Minimum Point Distance Intersection over Union(MPDIoU)loss function in the YOLOv7 algorithm,which accelerates model learning and enhances robustness.To mitigate the problem of missed recognitions caused by complex water surface conditions in purely visual algorithms,this paper further adopts the fusion of LiDAR and camera data,projecting the threedimensional point-cloud data from LiDAR onto a two-dimensional pixel plane.This significantly reduces the rate of missed detections for water surface targets.
文摘Oil spills continue to generate various issues and concerns regarding their effect and behavior in the marine environment,owing to the related potential for detrimental environmental,economic and social implications.It is essential to have a solid understanding of the ways in which oil interacts with the water and the coastal ecosystems that are located nearby.This study proposes a simplified model for predicting the plume-like transport behavior of heavy Bunker C fuel oil discharging downward from an acutely-angled broken pipeline located on the water surface.The results show that the spill overall profile is articulated in three major flow areas.The first,is the source field,i.e.,a region near the origin of the initial jet,followed by the intermediate or transport field,namely,the region where the jet oil flow transitions into an underwater oil plume flow and starts to move horizontally,and finally,the far-field,where the oil re-surface and spreads onto the shore at a significant distance from the spill site.The behavior of the oil in the intermediate field is investigated using a simplified injection-type oil spill model capable of mimicking the undersea trapping and lateral migration of an oil plume originating from a negatively buoyant jet spill.A rectangular domain with proper boundary conditions is used to implement the model.The Projection approach is used to discretize a modified version of the Navier-Stokes equations in two dimensions.A benchmark fluid flow issue is used to verify the model and the results indicate a reasonable relationship between specific gravity and depth as well as agreement with the aerial data and a vertical temperature profile plot.
文摘Physicochemical parameters of surface water sources in the study of local government areas (LGAs) were assessed using standard procedures. The mean physicochemical parameters for pH (5.49), NO2 (0.23 mg/L), SO4 (0.77 mg/L), Na (28.72 mg/L), Ca (28.94 mg/L), Mg (17.50 mg/L), Cl (11.65 mg/L), TSS (6.27 mg/L), TDS (104.23 mg/L), BOD (2.83 mg/L) and F (0.87 mg/L) were below WHO standards irrespective of their defecation status. The values for electrical conductivity (EC) (2770.50 µs/cm, turbidity (481.24 NTU), dissolved oxygen (DO) (5.32 mg/L), chemical oxygen demand (COD) (445.50 mg/L), K (125.06 mg/L), PO4 (0.78 mg/L) and Fe (0.57 mg/L) were above the WHO limits for safe water. Higher EC and COD values obtained in the study is evidence of pollution of the water sources by organic matter.
基金supported by the Natural Science Foundation of Hebei Province(D202450411)the Basic Research Programme of Chinese Academy of Geological Sciences(CAGS)(YK202302).
文摘Based on meteorological data collected over nearly 60 years(1960-2017)from four national meteorological stations along the margins of the Badain Jaran Desert,this study analyzed the spatiotemporal variations in evaporation from water surfaces and identified the dominant controlling factors.Methods used included linear trend analysis,linear tendency estimation,the departure method,the rank correlation coefficient-based method,and Multiple Linear Regression(MLR).Results indicate notable spatiotemporal differences in evaporation distribution and evolution.Spatially,average annual evaporation exhibited a pronounced altitude effect,decreasing at a rate of about 8.23 mm/m from east to west with increasing altitude.Temporally,annual evaporation showed significant upward trends after 1996 at the northeastern(Guaizi Lake)and western(Dingxin)margins,with rates of 132 mm/10a and 105 mm/10a,respectively.Conversely,along the northwestern(Ejina Banner)and southern(Alxa Right Banner)margins of the desert,an evaporation paradox was observed,with annual evaporation trending downward at rates of 162 mm/10a and 187 mm/10a,respectively,especially after 1987.The dominant factors controlling evaporation varied spatially:Average annual temperature and relative humidity influended the western margin(Dingxin),average annual temperature was the key factor for the northeastern margin(Guaizi Lake),and average wind speed was crucial for the northern(Ejina Banner)and southern(Alxa Right Banner)margins.
文摘Objective: The main objective of this study was to assess the degree of contamination of surface waters by heavy metals and pesticides. Method: To this end, data were collected in December 2022 from four specific sampling stations: Okpara, Térou, Affon and Adjiro. Levels of heavy metals, including cadmium, chromium, copper, iron, mercury, nickel and lead, were measured and subjected to in-depth statistical analysis using graphical summation models. In addition, the concentrations of pesticide active ingredients present in the samples were interpreted and evaluated. The statistical data collected during this study were processed using R software, version 3.5.0. Results: The values obtained at the different stations Okpara, Térou, Affon and Adjiro are respectively Arsenic (2 × 10<sup>-4</sup> mg/L;2.2 × 10<sup>-1</sup> mg/L;1.2 × 10<sup>-4</sup> mg/L;2 × 10<sup>-4</sup> mg/L), Cadmium (4.4 × 10<sup>-5</sup> mg/L;1.1 × 10<sup>-2</sup> mg/L;10<sup>-4</sup> mg/L;4 × 10<sup>-4</sup> mg/L). Then Copper (7 × 10<sup>-4</sup> mg/L;3 × 10<sup>-3</sup> mg/L;7 × 10<sup>-4</sup> mg/L;1 × 10<sup>-4</sup> mg/L), Iron (1.51 mg/L;6.4 × 10<sup>-1</sup> mg/L;2.0012 mg/L;2.9 × 10<sup>-1</sup> mg/L), Lead (0 mg/L;0 mg/L;1.5 × 10<sup>-3</sup> mg/L;1.5 × 10<sup>-3</sup> mg/L). Mercury, nickel and chromium were not detected in surface waters. It is important to note that the values obtained for trace metals (Cadmium, Chromium, Copper, Iron, Mercury, nickel and chromium were not detected in surface waters. It is important to note that the values obtained for trace metals (cadmium, chromium, copper, iron, mercury, nickel and lead) were all below the guideline standards set by the WHO in 2006 for uncontaminated surface waters. This indicates that the surface waters of the Upper Ouémé were below acceptable contamination thresholds in terms of heavy metals. However, the presence of pesticide active ingredients such as cyfluthrin, endosulfan-alpha, endosulfan-beta, profenosfos, tihan, atrazine, gala super and glycel clearly indicates that these surface waters are subject to agricultural contamination.
基金funded by the National Key Research and Development Project(Grant No.2019YFE0123300)the National Natural Science Foundation of China(Grant No.42072337)+1 种基金the preresearch project on Civil Aerospace Technologies(Grant Nos.D020101 and D020102)funded by the China National Space Administration through the Pandeng Program of the National Space Science Center,Chinese Academy of Sciences,Key Research Program of the Chinese Academy of Sciences(Grant No.ZDBS-SSW-TLC001).
文摘China’s first Mars rover,Zhurong,successfully landed in the south of Utopia Planitia.The surface water content at the landing area can provide constraints on mineral formation conditions and help us better understand the evolution of the Martian aqueous and geological environment.In this work,the surface kinetic temperature of the Zhurong landing area was derived by analyzing data from the Mars Express Observatoire pour la Minéralogie,l’Eau,les Glaces et l’Activité(OMEGA)spectrometer.Using the Discrete Ordinate Radiative Transfer(DISORT)model,we performed atmospheric correction and thermal correction for the OMEGA data to obtain the surface effective single-particle absorption thickness(ESPAT)parameter to evaluate the surface water content.The surface water content distribution at the landing area was relatively uniform at a lateral scale of~10 km.At the Zhurong landing site,the surface water content in the topmost layer(a few hundred micrometers)of the regolith was 5−8 weight percent water(wt%H_(2)O),assuming surface particle sizes of<45μm,or 1.6−2.5 wt%H_(2)O,assuming surface particle sizes in the range of 125−250μm.The Mars Surface Composition Detector(MarSCoDe)onboard Zhurong also observed significant H_(2)O/OH signals in the landing area.Our results provide an important regional context for the hydration state of the area and can be further verified by the H content derived from the Laser-Induced Breakdown Spectrometer(LIBS)data of MarSCoDe.
文摘Antibiotics are widely used in the process of human medical treatment,livestock and poultry breeding,and aquaculture.With the excretion of urine and feces,they enter the water environment of human life and become an important source of water environment pollution.Antibiotic residues in the environment have high ecological and health risks.Through the pilot monitoring of antibiotics in the main stream of the Yangtze River,Chaohu Lake and the drinking water source of Hefei City,the current situation and impact of antibiotic pollution were analyzed.The results show that 32 kinds of antibiotics and their derivatives of the six major categories involved were detected to varying degrees,and the concentrations at some points reached 1.26μg/L.Finally,the prevention and control of antibiotic pollution in the surface water of the Yangtze River basin in a province of central China were summarized,and relevant suggestions were given.
基金the Doon University,Dehradun,India,for the financial support to carry out the research work。
文摘The rivers draining from the Himalayan range distribute enormous amount of fresh water to the people living in downstream regions.Trace metals flowed with river water can lead to serious impact on ecological system and human health.Nevertheless,the documentation on trace elements of Himalayan rivers is inadequately documented.The current study deals with the spatial and temporal variability of the major and trace elements of Ganga river water in epirhithron,metarhithron and hyporhithron zone belonging to Himalayan segment.Water samples from nineteen monitoring locations were collected in pre-monsoon(May-June),monsoon(AugustSeptember)and post-monsoon(December)seasons and subjected to be assessed for 20 elements(Ag,Al,Ba,Cd,Ca,Cr,Cu,Fe,Ga,K,Mn,Mg,Na,Ni,Pb,Sr,Th,U,Zn,and Zr)using ICP-OES(Inductively Coupled Plasma-Optical Emission Spectrometer).Different water pollution indexes such as HPI(Heavy Metal Pollution Index),MI(Metal Index)and PI(Pollution Index)were used to describe current water quality status at each monitoring station under particular classified ecological zone.The studied stations in hyporhithron zone had the value of Metal Index(MI>1),indicating threshold of warning.Further,the highest values of HPI in hyporhithron zone correspond to poor water quality status.Sites with poor water quality were also found to be contaminated as per the Pollution Index(PI),exhibiting high concentrations for element(Fe).However,the epirhithron and metarhithron zone in Himalayan segment showed excellent water quality mainly contributed from natural sources.Cluster Analysis(CA)and Principal Component Analysis(PCA)were applied to identify the main influential sources for Ganga river water pollution.The Kriging interpolation method was also applied to prepare spatial distribution map of computed indexes(HPI,MI,and PI).With the help of index of local Moran’s I(LMI),identified spatial clusters and spatial outliers revealed the elevated concentration of most elements in hyporhithron zone.The dataset presented in this study would be convenient for government officials in developing more effective management policies and necessary steps to check and monitor the Ganga river water quality.It was also suggested that further investigations in terms of trace elemental sources and their role in self-purification properties of Ganga water can be addressed in future.
基金The National Key R&D Program of China under contract No.2022YFE0209300the National Natural Science Foundation of China under contract No.42006152+1 种基金the Zhejiang Provincial Natural Science Foundation of China under contract No.LQ21D060005the 111 Project under contract No.BP0820020.
文摘Subterranean estuaries(STEs)are characterized by the mixing of terrestrial fresh groundwater and seawater in coastal aquifers.Although microorganisms are important components of coastal groundwater ecosystems and play critical roles in biogeochemical transformations in STEs,limited information is available about how their community dynamics interact with hydrological,geochemical and environmental characteristics in STEs.Here,we studied bacterial and archaeal diversities and distributions with 16S rRNA-based Illumina MiSeq sequencing technology between surface water and groundwater in a karstic STE.Principal-coordinate analysis found that the bacterial and archaeal communities in the areas where algal blooms occurred were significantly separated from those in other stations without algal bloom occurrence.Canonical correspondence analysis showed that nutrients and salinity can explain the patterns of bacterial and archaeal community dynamics.The results suggest that hydrological,geochemical and environmental characteristics between surface water and groundwater likely control the bacterial and archaeal diversities and distributions in STEs.Furthermore,we found that some key species can utilize terrestrial pollutants such as nitrate and ammonia in STEs,indicating that these species(e.g.,Nitrosopumilus maritimus,Limnohabitans parvus and Simplicispira limi)may be excellent candidates for in situ degradation/remediation of coastal groundwater contaminations concerned with the nitrate and ammonia.Overall,this study reveals the coupling relationship between the microbial communities and hydrochemical environments in STEs,and provides a perspective of in situ degradation/remediation for coastal groundwater quality management.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1510701)the National Natural Science Foundation of China(Grant No.U20A20319).
文摘Owing to extensive construction of dams, the impact of backwater on flow may lead to navigation or flood control issues in curved channels. To date, the impact of backwater on the water surface profile in curved channels remains unknown and requires investigation. In this study, experiments were conducted in a glass-walled recirculating flume with a length of 19.4 m, a width of 0.6 m, and a depth of 0.8 m, and the impact of backwater on the water surface profile in a 90° channel bend was investigated. The experimental results showed that the backwater degree had a significant impact on the transverse and longitudinal flow depth distributions in the bend. The transverse slope of the flow (Jr) increased linearly with an increase in the Froude number of the approach flow upstream of the bend. Jr increased with the longitudinal location parameter ξ when −0.2 < ξ < 0.5, and decreased with ξ when 0.5 < ξ < 1.2. Furthermore, the results showed that Jr asymptotically decreased to zero with an increase in the degree of backwater. An equation was formulated to estimate the transverse slope of the flow in a 90° bend in backwater zones.
基金This study was carried out in the framework of the research project entitled“Assessing and Mapping the Environmental and Health Impacts of Abandoned and Ongoing Mining Activities in Lubumbashi and Its Neighborhood,Democratic Republic of Congo”with UNESCO-Sida Project funds(Contract No.4500309530).
文摘Arsenic,barium,bismuth,cadmium,cesium,chromium,cobalt,copper,iron,lead,manganese,molybdenum,nickel,strontium,thallium,tungsten,uranium,vanadium,and zinc concentrations were investigated in forty-two groundwater samples,twenty-four surface water and six surface sediment samples in Kinsevere industrial zone and its surroundings in February and march 2017,January,February and March 2018 to evaluate the potential human health risk.Chemical analyses were carried out by using ICP-SF-MS(Inductively Coupled Plasma-Sector Field Mass Spectrometry,Thermo Scientific Element II).The trace metals were detected at various concentrations in all the analyzed samples.Pb,Mn and Fe concentrations exceeded the European Union acceptable maximum limits for water intended for human consumption in 4.76%,28.57%and 61.90%of the groundwater samples,respectively and in 0%,50%and 100%of the surface water samples,respectively.As,Cr,Cu and Ni concentrations exceeded the recommended lower sediment quality guideline values in 33.33%,50%,83.33%and 83.33%of the surface sediment samples,respectively.All those elevated trace metal concentrations in the groundwater,surface water and sediments represent a risk for the health of local population as well as for aquatic organisms.
文摘In view of the fact that cages and bait are not allowed in large water surface aquiculture,1-2 kinds of new green feeds"plankton+microecologics"were developed to solve the problems of yield reduction,slow growth and difficulty in fishing of aquatic organisms caused by extensive mode.The new green feed is ecological,environmentally friendly and residue-free,which not only supplements nutrition but also meets the requirements of environmental protection.
文摘A study aimed at evaluating the physicochemical and bacteriological quality of surface water was therefore carried out in a few watercourses in the municipality of Mbankomo, located in the Center Region (Cameroon). The physico-chemical parameters were measured according to the standard method. The organic pollution index (OPI) was determined from the contents of nitrates, phosphates, and ammoniacal nitrogen to characterize the level of organic pollution of the water. The microorganisms sought were total flora, indicators of faecal contamination like total coliforms, faecal coliforms, feacal streptococci and Escherichia coli, as well as the species Clostridium perfringens. The organic pollution index indicates a high-level organic pollution level during the small rainy season and high to moderate during the small dry season. High concentrations of the total and fecal coliforms, streptococci fecal, Escherichia coli and Clostridium perfringens respectively of 1712 × 10<sup>5</sup> CFU/100mL;82 × 10<sup>5</sup> CFU/100mL;10 × 10<sup>5</sup> CFU/100mL;27 × 10<sup>5</sup> and 40 × 10<sup>3</sup> CFU/100mL, all higher than WHO standards, indicate that the waterways of Mbankomo are subject to feacal pollution and harbor pathogenic microflora. The cell densities of main bacteria were significantly correlated with main abiotic parameters, such as Escherichia coli, which was significantly correlated with the pH of the water (r = 0.35;p < 0.05). The variation of organic pollution index category means correspond to a high level of organic pollution during the small rainy season and a high to moderate level during the small dry season. The deterioration of the quality of these waters is favored by their proximity to sources of pollution (toilets, plantation), the runoff of the waters contaminated, the use of detergents and wrong maintenance. These waters without any treatment are not recommendable for human consumption according to standards of the World Health Organization.
文摘The Berg River Catchment based in the Western Cape Province,South Africa services the greater Cape Town area with water,subsequent to supplying the vast agricultural activities that exist in the middle and the lower reaches.This study thus investigates the hydrogeochemical interactions between surface and groundwater in the Berg River Catchment with the aim of establishing trends and transfer of constituents between the surface and groundwater systems,investigates the role that geology plays in water chemistry as well as identifies the geochemical processes controlling surface and groundwater chemistry in the catchment.This study was carried out using three types of research designs namely i)experimental research design;ii)field research design and meta-analysis research design.Furthermore,the study made use of hydrochemical data ranging from 2003 to 2013 obtained from the National Water Monitoring Database owned and maintained by the Department of Water and Sanitation and data that were sampled in 2016 by authors and analyzed using the ICP-MS Technique Ground Water Chart,Arc-GIS and Geosoft(Oasis Montaj)were further employed to model the data.The results indicated that:i)in the Upper Berg there is not much interaction and transfer of constituents between surface and groundwater;ii)the Middle Berg,however,indicated a degree of interaction with the sharing of constituents between the two water systems and iii)the Lower Berg indicated only NaCl water type also noting that the area situated near the river mouth whereby there is the mixing of river and seawater.
基金The National Natural Science Foundation of China under contract Nos U2006207 and 42006164.
文摘Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms.