Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims t...Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms.展开更多
As an important equipment for sea state remote sensing, high frequency surface wave radar (HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the ...As an important equipment for sea state remote sensing, high frequency surface wave radar (HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the integration of the second-order spectral continuum to that of the first-order region, where the strong external noise and the incorrect delineation of the first- and second-order Doppler spectral regions due to spectral aliasing are two major sources of errors in the wave height. To account for these factors, two more indices are introduced to the wave height estimation, i.e., the ratio of the maximum power of the second-or- der continuum to that of the Bragg spectral region (RSCB) and the ratio of the power of the second harmonic peak to that of the Bragg peak (RSHB). Both indices also have a strong correlation with the underlying wave height. On the basis of all these indices an empirical model is proposed to estimate the wave height. This method has been used in a three-months long experiment of the ocean state measuring and analyzing ra- dar, type S (OSMAR-S), which is a portable HFSWR with compact cross-loop/monopole receive antennas developed by Wuhan University since 2006. During the experiment in the Taiwan Strait, the significant wave height varied from 0 to 5 m. The significant wave heights estimated by the OSMAR-S correlate well with the data provided by the Oceanweather Inc. for comparison, with a correlation coefficient of 0.74 and a root mean square error (RMSE) of 0.77 m. The proposed method has made an effective improvement to the wave height estimation and thus a further step toward operational use of the OSMAR-S in the wave height extraction.展开更多
Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of ...Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of surface tidal currents in the open sea area to the east of the Zhoushan Islands of Zhejiang Province, China are studied. The following conclusions are drawn from the analysis: the tidal current pattern in the open sea area to the east of Zhoushan Islands is primarily regular semidiurnal, which is significantly affected by the shallow water constituents. The directions of the major axes of tidal current ellipses of M2 lie approx- imately in the NW-SE direction. With the increasing of distance away from the coast, the directions of the tidal current ellipses gradually shift toward the E-W direction. The tidal currents are mainly reversing cur- rents. The spatial distribution of probable maximum current velocities decreases gradually from northeast to southwest which is basically in accordance with the spatial distribution of measured maximum current velocities. The residual currents near the coast are larger than those far away from the coast. The directions of the residual currents are basically north by east, and the angle to the due north increases gradually with the increasing distance away from the coast. The topography shows a certain impact on the spatial distri- bution of shallow water constituents, the rotation of tidal currents, the probable maximum currents and the residual currents.展开更多
High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,wh...High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,while the AIS is usually used to verify the information of cooperative vessels.Because of interference from sea clutter,employing single-frequency HFSWR for vessel tracking may obscure vessels located in the blind zones of Bragg peaks.Analyzing changes in the detection frequencies constitutes an effective method for addressing this deficiency.A solution consisting of vessel fusion tracking is proposed using dual-frequency HFSWR data calibrated by the AIS.Since different systematic biases exist between HFSWR frequency measurements and AIS measurements,AIS information is used to estimate and correct the HFSWR systematic biases at each frequency.First,AIS point measurements for cooperative vessels are associated with the HFSWR measurements using a JVC assignment algorithm.From the association results of the cooperative vessels,the systematic biases in the dualfrequency HFSWR data are estimated and corrected.Then,based on the corrected dual-frequency HFSWR data,the vessels are tracked using a dual-frequency fusion joint probabilistic data association(JPDA)-unscented Kalman filter(UKF) algorithm.Experimental results using real-life detection data show that the proposed method is efficient at tracking vessels in real time and can improve the tracking capability and accuracy compared with tracking processes involving single-frequency data.展开更多
HF surface wave radar system OSMAR2000 is a broad-beam sea-state detecting radar. ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) algorithm is proposed to apply in DOA (direction of arriva...HF surface wave radar system OSMAR2000 is a broad-beam sea-state detecting radar. ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) algorithm is proposed to apply in DOA (direction of arrival) determination of sea echoes. The algorithm of ESPRIT is briefly introduced first. Then discussions are made on the technique for application in the OSMAR2000 framework. Numerical simulation results are presented to demonstrate the feasibility of radial current mapping based on this method. The algorithm manifests significant performance and computational advantages compared with that of MUSIC. Data acquired by OSMAR2000 are processed to give radial current map and the synthesized vector currents are compared with the in-situ measurement with traditional means. The results show the validity of ESPRIT application in DOA determination for broad-beam radar. Key words HF ground wave radar - sea surface current - ESPRIT - MUSIC CLC number TN 911.72 - TN 958.95 Foundation item: Supported by the National Natural Science Foundation of China (60201003) and the National High Technology Development 863 Program of China (863-818-01-02)Biography: Liu Dan-hong (1976-), female, Master candidate, research direction: radar signal processing.展开更多
The paper analyses the characteristics of radio frequency interference (RFI) in HF surface wave radar (HFSWR) which adopts the linear frequency modulated interrupted continuous wave (FMICW). RFI will influence a...The paper analyses the characteristics of radio frequency interference (RFI) in HF surface wave radar (HFSWR) which adopts the linear frequency modulated interrupted continuous wave (FMICW). RFI will influence all the range cells including all the positive frequency and negative frequency, and the negative frequency range cells contain only the interference information. Based on the above characteristics, we introduce and analyze a new adaptive interference mitigation beamforming algorithm using the negative frequency range cells samples to estimate the interference covariance matrix. Experimental results confirm that this general and robust algorithm can achieve effective RFI suppression using the data recorded by the HFSWR, located near Zhoushan in Zhejiang China.展开更多
In this study a novel synthetic aperture radar(SAR)scattering model for sea surface with breaking waves is proposed.Compared with existing models,the proposed model considers an empirical relationship between wind spe...In this study a novel synthetic aperture radar(SAR)scattering model for sea surface with breaking waves is proposed.Compared with existing models,the proposed model considers an empirical relationship between wind speed and wave breaking scattering to present the contribution of wave breaking.Moreover,the scattering weight factor p,and wave breaking rate q,are performed to present the contribution of the quasi-specular scattering term,Bragg scattering term,and wave breaking scattering term to the total scattering from the sea surface.To explore the modeling accuracy of sea-surface scattering,a simulated normalized radar cross-section(NRCS)and measured NRCS are compared.The proposed model generated the simulated NRCS and a matching GF-3 dataset was used for the measured NRCS.It was revealed that the performance of the VV polarization of our model was much better than that of HH polarization,with a correlation of 0.91,bias of-0.14 dB,root mean square error(RMSE)of 1.26 dB,and scattering index(SI)of-0.11.In addition,the novel model is explored and compared with the geophysical model of CMODs and satellite-measured NRCS from GF-3 SAR wave mode imagery.For an incidence angle 40°–41°,the relationship between the NRCS and wind speed,relative wind direction is proposed.As with the SAR-measured NRCS,the performance of VV polarization was much better than HH polarization,with a correlation of 0.99,bias of-0.25 dB,RMSE of 0.64 dB,and SI of-0.04.展开更多
Ground wave over-the-horizon radar(GW-OTHR) can detect the OTH moving targets on sea or at low altitude. This paper discusses the background for detecting a target with GW-OTHR, introduces the theory and implementatio...Ground wave over-the-horizon radar(GW-OTHR) can detect the OTH moving targets on sea or at low altitude. This paper discusses the background for detecting a target with GW-OTHR, introduces the theory and implementation of the signal detection and estimation system which has the parallel processing function, and gives some experimental results. The results of GW-OTHR experiments show that this system can successfully detect and estimate the above-mentioned targets.展开更多
This study was conducted on the spatial distribution characteristics of surface tidal currents in the southwestern Taiwan Strait based on the quasi-harmonic analysis of current data obtained by two high frequency surf...This study was conducted on the spatial distribution characteristics of surface tidal currents in the southwestern Taiwan Strait based on the quasi-harmonic analysis of current data obtained by two high frequency surface wave radar(HFSWR) systems. The analysis shows that the tidal current pattern in the southwestern Taiwan Strait is primarily semi-diurnal and influenced significantly by shallow water constituents. The spatial distribution of tidal current ellipses of M2 is probably affected by the interaction between two different systems of tide wave, one from the northern mouth of Taiwan Strait and the other from the Bashi Channel. The directions of the major axes of M2 tidal current ellipses coincide roughly with the axis of the Taiwan Strait. The spatial distribution of the magnitudes of the probable maximum current velocity(PMCS) shows gradual increase of the velocity from northeast to southwest, which is in accordance with the spatial distribution of the measured maximum current velocity(MMCS). The directions of the residual currents are in accordance with the direction of the prevailing monsoon wind at the Taiwan Strait and the direction of the Taiwan warm current during summer. The bathymetry also shows a significant effect on the spatial distribution characteristics of tidal currents.展开更多
A new method to determine wave directions from nautical X-band images is proposed. The signatures of ocean waves show obvious scale and directional characteristics in nautical X-band radar images. Curvelet transform...A new method to determine wave directions from nautical X-band images is proposed. The signatures of ocean waves show obvious scale and directional characteristics in nautical X-band radar images. Curvelet transform(CT) possesses very high scale and directional sensitivities. Therefore, it has good capability to analyze ocean wave fields. The radar images are decomposed at different scales, in different directions, and at different positions by CT, and curvelet coefficients are obtained. Given to the scale and directional characteristics of surface waves,the information of ocean waves is centralized in the curvelet coefficients of certain directions and at certain scales.Therefore, the wave orientations can be determined. The 180 ambiguity is removed by calculating crosscorrelation coefficients(CCCs) between continuous collected images. The proposed method is verified by the dataset collected on the Northwest coast of the Zhangzi Island in the Yellow Sea of China from March to April 2009.展开更多
Using experimental data reflected by the sea on specific radar cross-section (SRCS) at millimeter and centimeter waves, the approximations of the wind speed, angle of the sea surface radiation and polarization of th...Using experimental data reflected by the sea on specific radar cross-section (SRCS) at millimeter and centimeter waves, the approximations of the wind speed, angle of the sea surface radiation and polarization of the incident field can be calculated. The simulation model of the scattered signal has been proposed on the basis of the semi-Markov nested processes. For the first time it has been proved that for the description of reflections at spikes and pauses, it is possible to use finite atomic functions. The proposed model allows us to estimate the baekscatter intensity of millimeter and centimeter radio waves by the sea at grazing angle of surface radiation, as well as to simulate scattered signal.展开更多
高频地波雷达海洋回波谱的Bragg峰和二次谐波峰中,均蕴含着浪高信息,因此发展出了基于Bragg峰功率(Power of Bragg Peak,PB)、二次谐波峰与Bragg功率比(Power Ratio of Second Harmonic Peak to Bragg Peak,RSB)、双频Bragg峰功率比(Pow...高频地波雷达海洋回波谱的Bragg峰和二次谐波峰中,均蕴含着浪高信息,因此发展出了基于Bragg峰功率(Power of Bragg Peak,PB)、二次谐波峰与Bragg功率比(Power Ratio of Second Harmonic Peak to Bragg Peak,RSB)、双频Bragg峰功率比(Power Ratio of Dual Frequency Bragg Peak,RDB)等浪高反演算法。然而,三种算法均无法实现不同海况、不同距离下浪高的精确反演。本文研究发现,PB算法适用于低海况,RSB算法在近距离高海况下表现良好,而RDB算法适用于远距离测量,即三种算法高性能测量区间存在强互补性。在此基础上,本文提出了一种基于多特征(PB、RSB和RDB)融合的浪高反演算法,其中采用反向传播(Back Propagation,BP)神经网络作为特征融合器。实验表明:本文算法在测量精度、波高适应范围、距离适应范围上均优于现有波高反演算法。展开更多
基金The National Natural Science Foundation of China under contract Nos U2006207 and 42006164.
文摘Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms.
基金The National Natural Science Foundation of China under contract No.61371198the National Special Program for Key Scientific Instrument and Equipment Development of China under contract No.2013YQ160793the Natural Science Foundation of Jiangsu Province of China under contract No.BK2012199
文摘As an important equipment for sea state remote sensing, high frequency surface wave radar (HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the integration of the second-order spectral continuum to that of the first-order region, where the strong external noise and the incorrect delineation of the first- and second-order Doppler spectral regions due to spectral aliasing are two major sources of errors in the wave height. To account for these factors, two more indices are introduced to the wave height estimation, i.e., the ratio of the maximum power of the second-or- der continuum to that of the Bragg spectral region (RSCB) and the ratio of the power of the second harmonic peak to that of the Bragg peak (RSHB). Both indices also have a strong correlation with the underlying wave height. On the basis of all these indices an empirical model is proposed to estimate the wave height. This method has been used in a three-months long experiment of the ocean state measuring and analyzing ra- dar, type S (OSMAR-S), which is a portable HFSWR with compact cross-loop/monopole receive antennas developed by Wuhan University since 2006. During the experiment in the Taiwan Strait, the significant wave height varied from 0 to 5 m. The significant wave heights estimated by the OSMAR-S correlate well with the data provided by the Oceanweather Inc. for comparison, with a correlation coefficient of 0.74 and a root mean square error (RMSE) of 0.77 m. The proposed method has made an effective improvement to the wave height estimation and thus a further step toward operational use of the OSMAR-S in the wave height extraction.
基金The National High Technology Research and Development Program of China(863 Program)under contract No.2012AA091701the Fundamental Research Fund for the Central Universities of China under contract No.2012212020211
文摘Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of surface tidal currents in the open sea area to the east of the Zhoushan Islands of Zhejiang Province, China are studied. The following conclusions are drawn from the analysis: the tidal current pattern in the open sea area to the east of Zhoushan Islands is primarily regular semidiurnal, which is significantly affected by the shallow water constituents. The directions of the major axes of tidal current ellipses of M2 lie approx- imately in the NW-SE direction. With the increasing of distance away from the coast, the directions of the tidal current ellipses gradually shift toward the E-W direction. The tidal currents are mainly reversing cur- rents. The spatial distribution of probable maximum current velocities decreases gradually from northeast to southwest which is basically in accordance with the spatial distribution of measured maximum current velocities. The residual currents near the coast are larger than those far away from the coast. The directions of the residual currents are basically north by east, and the angle to the due north increases gradually with the increasing distance away from the coast. The topography shows a certain impact on the spatial distri- bution of shallow water constituents, the rotation of tidal currents, the probable maximum currents and the residual currents.
基金The National Natural Science Foundation of China under contract No.61362002the Marine Scientific Research Special Funds for Public Welfare of China under contract No.201505002
文摘High-frequency surface wave radar(HFSWR) and automatic identification system(AIS) are the two most important sensors used for vessel tracking.The HFSWR can be applied to tracking all vessels in a detection area,while the AIS is usually used to verify the information of cooperative vessels.Because of interference from sea clutter,employing single-frequency HFSWR for vessel tracking may obscure vessels located in the blind zones of Bragg peaks.Analyzing changes in the detection frequencies constitutes an effective method for addressing this deficiency.A solution consisting of vessel fusion tracking is proposed using dual-frequency HFSWR data calibrated by the AIS.Since different systematic biases exist between HFSWR frequency measurements and AIS measurements,AIS information is used to estimate and correct the HFSWR systematic biases at each frequency.First,AIS point measurements for cooperative vessels are associated with the HFSWR measurements using a JVC assignment algorithm.From the association results of the cooperative vessels,the systematic biases in the dualfrequency HFSWR data are estimated and corrected.Then,based on the corrected dual-frequency HFSWR data,the vessels are tracked using a dual-frequency fusion joint probabilistic data association(JPDA)-unscented Kalman filter(UKF) algorithm.Experimental results using real-life detection data show that the proposed method is efficient at tracking vessels in real time and can improve the tracking capability and accuracy compared with tracking processes involving single-frequency data.
文摘HF surface wave radar system OSMAR2000 is a broad-beam sea-state detecting radar. ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) algorithm is proposed to apply in DOA (direction of arrival) determination of sea echoes. The algorithm of ESPRIT is briefly introduced first. Then discussions are made on the technique for application in the OSMAR2000 framework. Numerical simulation results are presented to demonstrate the feasibility of radial current mapping based on this method. The algorithm manifests significant performance and computational advantages compared with that of MUSIC. Data acquired by OSMAR2000 are processed to give radial current map and the synthesized vector currents are compared with the in-situ measurement with traditional means. The results show the validity of ESPRIT application in DOA determination for broad-beam radar. Key words HF ground wave radar - sea surface current - ESPRIT - MUSIC CLC number TN 911.72 - TN 958.95 Foundation item: Supported by the National Natural Science Foundation of China (60201003) and the National High Technology Development 863 Program of China (863-818-01-02)Biography: Liu Dan-hong (1976-), female, Master candidate, research direction: radar signal processing.
文摘The paper analyses the characteristics of radio frequency interference (RFI) in HF surface wave radar (HFSWR) which adopts the linear frequency modulated interrupted continuous wave (FMICW). RFI will influence all the range cells including all the positive frequency and negative frequency, and the negative frequency range cells contain only the interference information. Based on the above characteristics, we introduce and analyze a new adaptive interference mitigation beamforming algorithm using the negative frequency range cells samples to estimate the interference covariance matrix. Experimental results confirm that this general and robust algorithm can achieve effective RFI suppression using the data recorded by the HFSWR, located near Zhoushan in Zhejiang China.
基金The National Natural Science Foundation of China under contract No.4197060692。
文摘In this study a novel synthetic aperture radar(SAR)scattering model for sea surface with breaking waves is proposed.Compared with existing models,the proposed model considers an empirical relationship between wind speed and wave breaking scattering to present the contribution of wave breaking.Moreover,the scattering weight factor p,and wave breaking rate q,are performed to present the contribution of the quasi-specular scattering term,Bragg scattering term,and wave breaking scattering term to the total scattering from the sea surface.To explore the modeling accuracy of sea-surface scattering,a simulated normalized radar cross-section(NRCS)and measured NRCS are compared.The proposed model generated the simulated NRCS and a matching GF-3 dataset was used for the measured NRCS.It was revealed that the performance of the VV polarization of our model was much better than that of HH polarization,with a correlation of 0.91,bias of-0.14 dB,root mean square error(RMSE)of 1.26 dB,and scattering index(SI)of-0.11.In addition,the novel model is explored and compared with the geophysical model of CMODs and satellite-measured NRCS from GF-3 SAR wave mode imagery.For an incidence angle 40°–41°,the relationship between the NRCS and wind speed,relative wind direction is proposed.As with the SAR-measured NRCS,the performance of VV polarization was much better than HH polarization,with a correlation of 0.99,bias of-0.25 dB,RMSE of 0.64 dB,and SI of-0.04.
文摘Ground wave over-the-horizon radar(GW-OTHR) can detect the OTH moving targets on sea or at low altitude. This paper discusses the background for detecting a target with GW-OTHR, introduces the theory and implementation of the signal detection and estimation system which has the parallel processing function, and gives some experimental results. The results of GW-OTHR experiments show that this system can successfully detect and estimate the above-mentioned targets.
基金supported by the National High Technology Research and Development Program (‘863’ Program) of China under contract No. 2012AA091701the Fundamental Research Fund for the Central University of China under the contract No. 2012212020211
文摘This study was conducted on the spatial distribution characteristics of surface tidal currents in the southwestern Taiwan Strait based on the quasi-harmonic analysis of current data obtained by two high frequency surface wave radar(HFSWR) systems. The analysis shows that the tidal current pattern in the southwestern Taiwan Strait is primarily semi-diurnal and influenced significantly by shallow water constituents. The spatial distribution of tidal current ellipses of M2 is probably affected by the interaction between two different systems of tide wave, one from the northern mouth of Taiwan Strait and the other from the Bashi Channel. The directions of the major axes of M2 tidal current ellipses coincide roughly with the axis of the Taiwan Strait. The spatial distribution of the magnitudes of the probable maximum current velocity(PMCS) shows gradual increase of the velocity from northeast to southwest, which is in accordance with the spatial distribution of the measured maximum current velocity(MMCS). The directions of the residual currents are in accordance with the direction of the prevailing monsoon wind at the Taiwan Strait and the direction of the Taiwan warm current during summer. The bathymetry also shows a significant effect on the spatial distribution characteristics of tidal currents.
基金The National Natural Science Foundation of China under contract No.61601132
文摘A new method to determine wave directions from nautical X-band images is proposed. The signatures of ocean waves show obvious scale and directional characteristics in nautical X-band radar images. Curvelet transform(CT) possesses very high scale and directional sensitivities. Therefore, it has good capability to analyze ocean wave fields. The radar images are decomposed at different scales, in different directions, and at different positions by CT, and curvelet coefficients are obtained. Given to the scale and directional characteristics of surface waves,the information of ocean waves is centralized in the curvelet coefficients of certain directions and at certain scales.Therefore, the wave orientations can be determined. The 180 ambiguity is removed by calculating crosscorrelation coefficients(CCCs) between continuous collected images. The proposed method is verified by the dataset collected on the Northwest coast of the Zhangzi Island in the Yellow Sea of China from March to April 2009.
基金National Academy of Sciences of Ukraine(NASU)and Russian Foundation for Basic Research(RFBR)2012-2013(Project #12-02-90425)
文摘Using experimental data reflected by the sea on specific radar cross-section (SRCS) at millimeter and centimeter waves, the approximations of the wind speed, angle of the sea surface radiation and polarization of the incident field can be calculated. The simulation model of the scattered signal has been proposed on the basis of the semi-Markov nested processes. For the first time it has been proved that for the description of reflections at spikes and pauses, it is possible to use finite atomic functions. The proposed model allows us to estimate the baekscatter intensity of millimeter and centimeter radio waves by the sea at grazing angle of surface radiation, as well as to simulate scattered signal.
文摘高频地波雷达海洋回波谱的Bragg峰和二次谐波峰中,均蕴含着浪高信息,因此发展出了基于Bragg峰功率(Power of Bragg Peak,PB)、二次谐波峰与Bragg功率比(Power Ratio of Second Harmonic Peak to Bragg Peak,RSB)、双频Bragg峰功率比(Power Ratio of Dual Frequency Bragg Peak,RDB)等浪高反演算法。然而,三种算法均无法实现不同海况、不同距离下浪高的精确反演。本文研究发现,PB算法适用于低海况,RSB算法在近距离高海况下表现良好,而RDB算法适用于远距离测量,即三种算法高性能测量区间存在强互补性。在此基础上,本文提出了一种基于多特征(PB、RSB和RDB)融合的浪高反演算法,其中采用反向传播(Back Propagation,BP)神经网络作为特征融合器。实验表明:本文算法在测量精度、波高适应范围、距离适应范围上均优于现有波高反演算法。