期刊文献+
共找到11,904篇文章
< 1 2 250 >
每页显示 20 50 100
Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces 被引量:2
1
作者 Ruozhong Han Yuchan Zhang +6 位作者 Qilin Jiang Long Chen Kaiqiang Cao Shian Zhang Donghai Feng Zhenrong Sun Tianqing Jia 《Opto-Electronic Science》 2024年第3期33-46,共14页
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t... Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL. 展开更多
关键词 laser-induced periodic surface structures(LIPSS) local field enhancement collinear pump-probe imaging silicon high spatial frequency periodic structures
下载PDF
A 3D In-vitro model of the human dentine interface shows long-range osteoinduction from the dentine surface
2
作者 William Macalester Asme Boussahel +4 位作者 Rafael O.Moreno-Tortolero Mark R.Shannon Nicola West Darryl Hill Adam Perriman 《International Journal of Oral Science》 SCIE CAS CSCD 2024年第2期225-237,共13页
Emerging regenerative cell therapies for alveolar bone loss have begun to explore the use of cell laden hydrogels for minimally invasive surgery to treat small and spatially complex maxilla-oral defects.However,the or... Emerging regenerative cell therapies for alveolar bone loss have begun to explore the use of cell laden hydrogels for minimally invasive surgery to treat small and spatially complex maxilla-oral defects.However,the oral cavity presents a unique and challenging environment for in vivo bone tissue engineering,exhibiting both hard and soft periodontal tissue as well as acting as key biocenosis for many distinct microbial communities that interact with both the external environment and internal body systems,which will impact on cell fate and subsequent treatment efficacy.Herein,we design and bioprint a facile 3D in vitro model of a human dentine interface to probe the effect of the dentine surface on human mesenchymal stem cells(hMSCs)encapsulated in a microporous hydrogel bioink.We demonstrate that the dentine substrate induces osteogenic differentiation of encapsulated hMSCs,and that both dentine andβ-tricalcium phosphate substrates stimulate extracellular matrix production and maturation at the gel-media interface,which is distal to the gel-substrate interface.Our findings demonstrate the potential for long-range effects on stem cells by mineralized surfaces during bone tissue engineering and provide a framework for the rapid development of 3D dentine-bone interface models. 展开更多
关键词 interface DEN surface
下载PDF
Research status and prospects of the fractal analysis of metal material surfaces and interfaces
3
作者 Qinjin Dai Xuefeng Liu +2 位作者 Xin Ma Shaojie Tian Qinghe Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期20-38,共19页
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal... As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future. 展开更多
关键词 metal material surfaces and interfaces fractal analysis fractal dimension HOMOGENEITY
下载PDF
Review on the Fabrication of Surface Functional Structures for Enhancing Bioactivity of Titanium and Titanium Alloy Implants
4
作者 Heng Tang Jiaxiang Xu +4 位作者 Bin Guo Yansong Xie Yalong Sun Yanjun Lu Yong Tang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期23-49,共27页
Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and ... Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented. 展开更多
关键词 surface functional structure Titanium implant Manufacturing technology Bioactivity
下载PDF
Micro-structure and Macro-performance:Surface Layer Evolution of Concrete under Long-term Exposure in Harsh Plateau Climate
5
作者 CHEN Xin CUI Anqi +4 位作者 ZHENG Haitao YANG Wencui HUANG Xin GE Yong LI Lihui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1496-1506,共11页
We conducted a series tests on surface layers of plateau concrete at the ages of 180 and 540 days,including the most superficial cement paste,the 5 mm thick surface mortar,and the 50 mm thick surface concrete.Thermogr... We conducted a series tests on surface layers of plateau concrete at the ages of 180 and 540 days,including the most superficial cement paste,the 5 mm thick surface mortar,and the 50 mm thick surface concrete.Thermogravimetry and nitrogen absorption porosimetry on cement past,mercury intrusion porosimetry on mortar,and microhardness test on interface transition zone between mortar and coarse aggregate were conducted to evaluate the hydration degree and characterize the micro-structure.Whilst,tests for the rebound strength,abrasion resistance,and chloride ion impenetrability of concrete were conducted to assess the macro-performance.The experimental results show that,affected by the harsh plateau climate,outward surfaces have lower hydration degrees and worse pore structure than inward surfaces.As the hydration of concrete surface is ongoing after the age of 180 days,both the micro-structure and the macro-performance are continuously improved.In the long-term,either the orientation or the depth towards surface does not significantly affect concrete performance.Surface carbonation brings positive effects on mechanical properties but negative effects on the durability.Additionally,standard test result of chloride ion impenetrability is found significantly affected by the atmospheric pressure.For a same batch of concrete,charge passed in plateau regions is obviously lower than that in common regions. 展开更多
关键词 CONCRETE pore structure interface transition zone mechanical property chloride ion impenetrability PLATEAU
下载PDF
Advanced Functional Electromagnetic Shielding Materials:A Review Based on Micro‑Nano Structure Interface Control of Biomass Cell Walls
6
作者 Yang Shi Mingjun Wu +14 位作者 Shengbo Ge Jianzhang Li Anoud Saud Alshammari Jing Luo Mohammed A.Amin Hua Qiu Jinxuan Jiang Yazeed M.Asiri Runzhou Huang Hua Hou Zeinhom M.El‑Bahy Zhanhu Guo Chong Jia Kaimeng Xu Xiangmeng Chen 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期98-134,共37页
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and... Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field. 展开更多
关键词 Biomass materials Electromagnetic interference shielding Micro-nano structure interface control CONDUCTIVITY
下载PDF
Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction
7
作者 Hongxing Yuan Wei Gao +2 位作者 Xinhao Wan Jianqi Ye Dan Wen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期557-564,I0013,共9页
The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received partic... The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts.Here,the surface electronic structure of Ptbased noble metal aerogels(NMAs)was modulated by various organic ligands,among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis.Theoretical calculations suggested the smaller energy barrier for the transformation of O^(*) to OH^(*) and downshift the d-band center of Pt due to the interaction between 4-methylphenylene and the surface metals,thus enhancing the ORR intrinsic activity.Both Pt3Ni and Pt Pd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media.Remarkably,the 4-methylphenylene modified Pt Pd aerogel exhibited the higher halfwave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C.This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts. 展开更多
关键词 Noble metal aerogels surface electronic structure ORR ELECTROCATALYST Organic ligands
下载PDF
Analyzing the surface passivity effect of germanium oxynitride:a comprehensive approach through first principles simulation and interface state density
8
作者 Sheng-Jie Du Xiu-Xia Li +8 位作者 Yang Tian Yuan-Yuan Liu Ke Jia Zhong-Zheng Tang Jian-Ping Cheng Zhi Deng Yu-Lan Li Zheng-Cao Li Sha-Sha Lv 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期74-84,共11页
High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achiev... High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achieving an extremely low energy threshold.In this study,first-principles simulations,passivation film preparation,and metal oxide semiconductor(MOS)capacitor characterization were combined to study surface passivation.Theoretical calculations of the energy band structure of the -H,-OH,and -NH_(2) passivation groups on the surface of Ge were performed,and the interface state density and potential with five different passivation groups with N/O atomic ratios were accurately analyzed to obtain a stable surface state.Based on the theoretical calculation results,the surface passivation layers of the Ge_(2)ON_(2) film were prepared via magnetron sputtering in accordance with the optimum atomic ratio structure.The microstructure,C-V,and I-V electrical properties of the layers,and the passivation effect of the Al/Ge_(2)ON_(2)/Ge MOS were characterized to test the interface state density.The mean interface state density obtained by the Terman method was 8.4×10^(11) cm^(-2) eV^(-1).The processing of germanium oxynitrogen passivation films is expected to be used in direct dark matter detection of the HPGe detector surface passivation technology to reduce the detector leakage currents. 展开更多
关键词 surface passivation High purity germanium detector Germanium nitrogen oxide interface state density
下载PDF
A Facile Li_(2)TiO_(3) Surface Modification to Improve the Structure Stability and Electrochemical Performance of Full Concentration Gradient Li-Rich Oxides
9
作者 Naifang Hu Yuan Yang +5 位作者 Lin Li Yuhan Zhang Zhiwei Hu Lan Zhang Jun Ma Guanglei Cui 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期41-48,共8页
Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rat... Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries. 展开更多
关键词 full concentration gradient lithium-rich layered oxides structure stability surface modification
下载PDF
Laser-assisted water jet machining of high quality micro-trap structures on stainless steel surfaces
10
作者 LIU Li YAO Peng +3 位作者 CHU Dong-kai XU Xiang-yue QU Shuo-shuo HUANG Chuan-zhen 《中国光学(中英文)》 EI CAS CSCD 北大核心 2024年第6期1476-1488,共13页
Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while exte... Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while extending their lifespan.This paper explores the application of laser-assisted water jet technology in constructing high-quality micro-trap structures on 316L stainless steel,a key material in accelerator manufacturing.The study systematically analyzes the impact of various parameters such as laser repetition frequency,pulse duration,average power,water jet pressure,repeat times,nozzle offset,focal position,offset distance between grooves,and processing speed on the surface morphology of stainless steel.The findings reveal that micro-groove depth increases with higher laser power but decreases with increasing water jet pressure and processing speed.Interestingly,repeat times have minimal effect on depth.On the other hand,micro-groove width increases with higher laser power and repeat times but decreases with processing speed.By optimizing these parameters,the researchers achieved high-quality pound sign-shaped trap structure with consistent dimensions.We tested the secondary electron emission coefficient of the"well"structure.The coefficient is reduced by 0.5 at most compared to before processing,effectively suppressing secondary electron emission.These results offer indispensable insights for the fabrication of micro-trap structures on material surfaces.Laser-assisted water jet technology demonstrates considerable potential in mitigating SEE on metal surfaces. 展开更多
关键词 laser-assisted water jet 316L stainless steel micro-trap structures "well"structure surface morphology secondary electron emission(SEE) groove depth groove width
下载PDF
Controlled Twill Surface Structure Endowing Nanofiber Composite Membrane Excellent Electromagnetic Interference Shielding
11
作者 Dechang Tao Xin Wen +4 位作者 Chenguang Yang Kun Yan Zhiyao Li Wenwen Wang Dong Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期255-273,共19页
Inspired by the Chinese Knotting weave structure,an electromagnetic interference(EMI)nanofiber composite membrane with a twill surface was prepared.Poly(vinyl alcohol-co-ethylene)(Pva-co-PE)nanofibers and twill nylon ... Inspired by the Chinese Knotting weave structure,an electromagnetic interference(EMI)nanofiber composite membrane with a twill surface was prepared.Poly(vinyl alcohol-co-ethylene)(Pva-co-PE)nanofibers and twill nylon fabric were used as the matrix and filter templates,respectively.A Pva-co-PEMXene/silver nanowire(Pva-co-PE-MXene/AgNW,PM_(x)Ag)membrane was successfully prepared using a template method.When the MXene/AgNW content was only 7.4 wt%(PM_(7.4)Ag),the EMI shielding efficiency(SE)of the composite membrane with the oblique twill structure on the surface was 103.9 dB and the surface twill structure improved the EMI by 38.5%.This result was attributed to the pre-interference of the oblique twill structure in the direction of the incident EM wave,which enhanced the probability of the electromagnetic waves randomly colliding with the MXene nanosheets.Simultaneously,the internal reflection and ohmic and resonance losses were enhanced.The PM_(7.4)Ag membrane with the twill structure exhibited both an outstanding tensile strength of 22.8 MPa and EMI SE/t of 3925.2 dB cm^(-1).Moreover,the PM_(x)Ag nanocomposite membranes demonstrated an excellent thermal management performance,hydrophobicity,non-flammability,and performance stability,which was demonstrated by an EMI SE of 97.3%in a high-temperature environment of 140℃.The successful preparation of surface-twill composite membranes makes it difficult to achieve both a low filler content and a high EMI SE in electromagnetic shielding materials.This strategy provides a new approach for preparing thin membranes with excellent EMI properties. 展开更多
关键词 Twill surface structure MXene/AgNW Nanofiber membrane Electromagnetic interference Flexibility and mechanical properties
下载PDF
Two-dimensional laser-induced periodic surface structures formed on crystalline silicon by GHz burst mode femtosecond laser pulses 被引量:3
12
作者 Shota Kawabata Shi Bai +2 位作者 Kotaro Obata Godai Miyaji Koji Sugioka 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期212-220,共9页
Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that canno... Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that cannot be obtained by the conventional irradiation scheme of femtosecond laser pulses(single-pulse mode).However,most studies using the GHz burst mode femtosecond laser pulses focus on ablation of materials to achieve high-efficiency and high-quality material removal.In this study,we explore the ability of the GHz burst mode femtosecond laser processing to form laser-induced periodic surface structures(LIPSS)on silicon.It is well known that the direction of LIPSS formed by the single-pulse mode with linearly polarized laser pulses is typically perpendicular to the laser polarization direction.In contrast,we find that the GHz burst mode femtosecond laser(wavelength:1030 nm,intra-pulse duration:220 fs,intra-pulse interval time(intra-pulse repetition rate):205 ps(4.88 GHz),burst pulse repetition rate:200 kHz)creates unique two-dimensional(2D)LIPSS.We regard the formation mechanism of 2D LIPSS as the synergetic contribution of the electromagnetic mechanism and the hydrodynamic mechanism.Specifically,generation of hot spots with highly enhanced electric fields by the localized surface plasmon resonance of subsequent pulses in the bursts within the nanogrooves of one-dimensional LIPSS formed by the preceding pulses creates 2D LIPSS.Additionally,hydrodynamic instability including convection flow determines the final structure of 2D LIPSS. 展开更多
关键词 GHz burst laser-induced periodic surface structures(LIPSS) surface nanostructuring 2D nanostructures
下载PDF
Unraveling structure and performance of protein a ligands at liquid–solid interfaces: A multi-techniques analysis 被引量:1
13
作者 Yi Shen Xinshuang Chu Qinghong Shi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期232-239,共8页
Oriented ligand immobilization is one of the most effective strategies used in the design and construction of a high-capacity protein A chromatography. In this work, cysteine was introduced as anchoring sites by subst... Oriented ligand immobilization is one of the most effective strategies used in the design and construction of a high-capacity protein A chromatography. In this work, cysteine was introduced as anchoring sites by substituting a specific residue on Helix Ⅰ, Ⅱ, and at C-terminus of antibody binding domain Z from protein A, respectively, to investigate structural evolution and binding behavior of protein A ligands at liquid-solid interfaces. Among the three affinity dextran-coated Fe_(3)O_(4) magnetic nanoparticles(Fe_(3)O_(4)@Dx MNPs), affinity MNPs with the immobilized ligand via N11C on Helix Ⅰ(Fe_(3)O_(4)@Dx-Z_(1) MNPs) had the highest helical content, and MNPs with the immobilized ligand via G29C on Helix Ⅱ(Fe_(3)O_(4)@Dx-Z_(2) MNPs) had the lowest helical content at the same pHs. It was attributed to less electrostatic attraction of ligand to negatively charged surface on Fe_(3)O_(4)@Dx-Z_(1) MNPs because of less positive charged residues on Helix Ⅰ(K6) than Helix Ⅱ(R27/K35). Among the three affinity MNPs, moreover, the highest affinity to immunoglobulin G(IgG) binding was observed on Fe_(3)O_(4)@Dx-Z_(1) MNPs in isothermal titration calorimetry measurement, further validating greater structural integrity of the ligand on Fe_(3)O_(4)@Dx-Z_(1) MNPs. Finally,the study of IgG binding on MNPs and 96-well plates showed that anchoring sites for ligand immobilization had distinct influences on IgG binding and IgG-mediated antigen binding. This work illustrated that anchoring sites of the ligands had a striking significance for the molecular structure of the ligand at liquid-solid interfaces and raised an important implication for the design and optimization of protein A chromatography and protein A-based immunoassay analysis. 展开更多
关键词 ADSORPTION interface THERMODYNAMICS Protein A ligand IMMOBILIZATION Molecular structure
下载PDF
Ultralow Interfacial Thermal Resistance of Graphene Thermal Interface Materials with Surface Metal Liquefaction 被引量:1
14
作者 Wen Dai Xing-Jie Ren +13 位作者 Qingwei Yan Shengding Wang Mingyang Yang Le Lv Junfeng Ying Lu Chen Peidi Tao Liwen Sun Chen Xue Jinhong Yu Chengyi Song Kazuhito Nishimura Nan Jiang Cheng-Te Lin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期183-196,共14页
Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of hi... Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices.Based on the ultra-high basal-plane thermal conductivity,graphene is an ideal candidate for preparing high-performance TIMs,preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM.However,the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory.In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved,another critical factor is the limited actual contact area leading to relatively high contact thermal resistance(20-30 K mm^(2) W^(−1))of the“solid-solid”mating interface formed by the vertical graphene and the rough chip/heat sink.To solve this common problem faced by vertically aligned graphene,in this work,we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces.Based on rational graphene orientation regulation in the middle tier,the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m^(−1) K^(−1).Additionally,we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a“liquid-solid”mating interface,significantly increasing the effective heat transfer area and giving a low contact thermal con-ductivity of 4-6 K mm^(2) W^(−1) under packaging conditions.This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management. 展开更多
关键词 Vertically aligned graphene Liquid metal surface modification Thermal interface materials
下载PDF
Enhanced energy-absorbing and sound-absorbing capability of functionally graded and helicoidal lattice structures with triply periodic minimal surfaces 被引量:1
15
作者 Miao Zhao Zhendong Li +2 位作者 Jun Wei Chua Chong Heng Lim Xinwei Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1973-1985,共13页
Lattice structures have drawn much attention in engineering applications due to their lightweight and multi-functional properties.In this work,a mathematical design approach for functionally graded(FG)and helicoidal l... Lattice structures have drawn much attention in engineering applications due to their lightweight and multi-functional properties.In this work,a mathematical design approach for functionally graded(FG)and helicoidal lattice structures with triply periodic minimal surfaces is proposed.Four types of lattice structures including uniform,helicoidal,FG,and combined FG and helicoidal are fabricated by the additive manufacturing technology.The deformation behaviors,mechanical properties,energy absorption,and acoustic properties of lattice samples are thoroughly investigated.The load-bearing capability of helicoidal lattice samples is gradually improved in the plateau stage,leading to the plateau stress and total energy absorption improved by over 26.9%and 21.2%compared to the uniform sample,respectively.This phenomenon was attributed to the helicoidal design reduces the gap in unit cells and enhances fracture resistance.For acoustic properties,the design of helicoidal reduces the resonance frequency and improves the peak of absorption coefficient,while the FG design mainly influences the peak of absorption coefficient.Across broad range of frequency from 1000 to 6300 Hz,the maximum value of absorption coefficient is improved by18.6%-30%,and the number of points higher than 0.6 increased by 55.2%-61.7%by combining the FG and helicoidal designs.This study provides a novel strategy to simultaneously improve energy absorption and sound absorption properties by controlling the internal architecture of lattice structures. 展开更多
关键词 additive manufacturing lattice structure triply periodic minimal surface energy absorption sound absorption
下载PDF
Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure 被引量:1
16
作者 李玲玲 魏勇 +4 位作者 刘春兰 任卓 周爱 刘志海 张羽 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期201-208,共8页
To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-typ... To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-type structure and microsphere structure is proposed in this paper. The fiber sidepolishing technique converts the coaxial dual-waveguide fiber into a D-type one, and the evanescent wave in the ring core leaks, generating a D-type sensing region;the fiber optic fused ball push technology converts the coaxial dual waveguides into microspheres, and the stimulated cladding mode evanescent wave leaks, producing the microsphere sensing region. By injecting light into the coaxial dual-waveguide middle core alone, the sensor can realize single-stage sensing in the microsphere sensing area;it can also realize dual-channel sensing in the D-type sensing area and microsphere sensing area by injecting light into the ring core. The refractive index measurement ranges for the two channels are 1.333–1.365 and 1.375–1.405, respectively, with detection sensitivities of 981.56 nm/RIU and 4138 nm/RIU. The sensor combines wavelength division multiplexing and space division multiplexing technologies, presenting a novel research concept for multi-channel fiber SPR sensors. 展开更多
关键词 coaxial dual-waveguide optical fiber D structure optical fiber microsphere structure dual-channel fiber-optic surface plasmon resonance(SPR)sensor
下载PDF
A Modified Model for Soil–Structure Interface Considering Random Damage of Mesoscopic Contact Elements
17
作者 KE Li-jun GAO Yu-feng +2 位作者 ZHAO Zi-hao LI Da-yong JI Jian 《China Ocean Engineering》 SCIE EI CSCD 2023年第5期807-818,共12页
The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic ... The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic contact elements that are damaged randomly throughout the shearing process due to the natural heterogeneity.The evolution equation of damage variable is developed based on the Weibull function,which is able to cover a rather wide range of distribution shapes by only two parameters,making it applicable for varying scenarios.Accordingly,a statistical damage model is established by incorporating Mohr–Coulomb strength criterion,in which the interfacial residual strength is considered whereby the strain softening behavior can be described.A concept of“semi-softening”characteristic point on shear stress–displacement curve is proposed for effectively modeling the evolution of strain softening.Finally,a series of ring shear tests of the interfaces between fine sea sand and smooth/rough steel surfaces are conducted.The predicted results using the proposed model are compared with experimental data of this study as well as some results from existing literature,indicating that the model has a good performance in modeling the progressive failure and strain softening behavior for various types of soil–structure interfaces. 展开更多
关键词 soil–structure interface statistical damage model mesoscopic element Weibull function “semi-softening”characteristic point
下载PDF
Generating micro/nanostructures on magnesium alloy surface using ultraprecision diamond surface texturing process
18
作者 Hanheng Du Mengnan Jiang +2 位作者 Zuankai Wang Zhiwei Zhu Suet To 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1472-1483,共12页
The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flamm... The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flammability and ignition.Motivated by this,this study proposed a machining process,named the ultraprecision diamond surface texturing process,to machine the micro/nanostructures on magnesium alloy surfaces.Experimental results showed the various microstructures and sawtooth-shaped nanostructures were successfully generated on the AZ31B magnesium alloy surfaces,demonstrating the effectiveness of this proposed machining process.Furthermore,sawtooth-shaped nanostructures had the function of inducing the optical effect and generating different colors on workpiece surfaces.The colorful letter and colorful flower image were clearly viewed on magnesium alloy surfaces.The corresponding cutting force,chip morphology,and tool wear were systematically investigated to understand the machining mechanism of micro/nanostructures on magnesium alloy surfaces.The proposed machining process can further improve the performances of the magnesium alloy and extend its functions to other fields,such as optics. 展开更多
关键词 Magnesium alloy MICRO/NANOstructure Ultraprecision diamond surface texturing Cutting force Chip morphology structural color
下载PDF
Tailoring the surface and interface structures of photocatalysts to enhance hydrogen production
19
作者 Tao Zhang Pengfei Wang +3 位作者 Shuai Yue Fei Li Zhiyong Zhao Sihui Zhan 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第4期1161-1174,共14页
Photocatalytic water splitting using semiconductor photocatalysts is a promising approach for the production of carbon-neutral,sustainable and clean hydrogen fuel.However,the separation and transport of photoinduced c... Photocatalytic water splitting using semiconductor photocatalysts is a promising approach for the production of carbon-neutral,sustainable and clean hydrogen fuel.However,the separation and transport of photoinduced carriers are generally considered to be rate-limiting steps,and their low efficiency remains a major challenge.Therefore,much effort has been devoted to developing new strategies in surface/interface engineering of photocatalysts to improve the dynamics of charge separation/transport.This feature article briefly summarizes recent advances in photocatalyst surface/interface engineering by our research group,which have been achieved through the design of various novel photocatalysts,including interfacial modulation,heterostructure construction,heteroatom doping,single atom and diatom sites.The article is divided into three parts:first,we briefly introduce the three key processes involved in solar water splitting and reveal relationships between the properties of nanostructural photocatalysts and the fundamentals of water splitting;second,we detail methods and strategies for surface and interfacial structures to improve the efficiency of the fundamental processes,especially charge separation;finally,we explore prospects for photocatalytic water splitting applications.This article provides a valuable resource and strategies for researchers currently working in the field of photocatalytic water splitting. 展开更多
关键词 photocatalytic water splitting surface/interface structures dual-functional photocatalysis
原文传递
INTEGRATION SHAPE AND SIZING OPTIMIZATION OF COMPOSITE WING STRUCTURE BASED ON RESPONSE SURFACE METHOD 被引量:7
20
作者 王伟 杨伟 常楠 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期94-100,共7页
An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitabl... An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting. 展开更多
关键词 composite structures shape optimization WINGS sizing optimization response surface method
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部