Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t...Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.展开更多
Emerging regenerative cell therapies for alveolar bone loss have begun to explore the use of cell laden hydrogels for minimally invasive surgery to treat small and spatially complex maxilla-oral defects.However,the or...Emerging regenerative cell therapies for alveolar bone loss have begun to explore the use of cell laden hydrogels for minimally invasive surgery to treat small and spatially complex maxilla-oral defects.However,the oral cavity presents a unique and challenging environment for in vivo bone tissue engineering,exhibiting both hard and soft periodontal tissue as well as acting as key biocenosis for many distinct microbial communities that interact with both the external environment and internal body systems,which will impact on cell fate and subsequent treatment efficacy.Herein,we design and bioprint a facile 3D in vitro model of a human dentine interface to probe the effect of the dentine surface on human mesenchymal stem cells(hMSCs)encapsulated in a microporous hydrogel bioink.We demonstrate that the dentine substrate induces osteogenic differentiation of encapsulated hMSCs,and that both dentine andβ-tricalcium phosphate substrates stimulate extracellular matrix production and maturation at the gel-media interface,which is distal to the gel-substrate interface.Our findings demonstrate the potential for long-range effects on stem cells by mineralized surfaces during bone tissue engineering and provide a framework for the rapid development of 3D dentine-bone interface models.展开更多
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal...As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.展开更多
Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and ...Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented.展开更多
We conducted a series tests on surface layers of plateau concrete at the ages of 180 and 540 days,including the most superficial cement paste,the 5 mm thick surface mortar,and the 50 mm thick surface concrete.Thermogr...We conducted a series tests on surface layers of plateau concrete at the ages of 180 and 540 days,including the most superficial cement paste,the 5 mm thick surface mortar,and the 50 mm thick surface concrete.Thermogravimetry and nitrogen absorption porosimetry on cement past,mercury intrusion porosimetry on mortar,and microhardness test on interface transition zone between mortar and coarse aggregate were conducted to evaluate the hydration degree and characterize the micro-structure.Whilst,tests for the rebound strength,abrasion resistance,and chloride ion impenetrability of concrete were conducted to assess the macro-performance.The experimental results show that,affected by the harsh plateau climate,outward surfaces have lower hydration degrees and worse pore structure than inward surfaces.As the hydration of concrete surface is ongoing after the age of 180 days,both the micro-structure and the macro-performance are continuously improved.In the long-term,either the orientation or the depth towards surface does not significantly affect concrete performance.Surface carbonation brings positive effects on mechanical properties but negative effects on the durability.Additionally,standard test result of chloride ion impenetrability is found significantly affected by the atmospheric pressure.For a same batch of concrete,charge passed in plateau regions is obviously lower than that in common regions.展开更多
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received partic...The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts.Here,the surface electronic structure of Ptbased noble metal aerogels(NMAs)was modulated by various organic ligands,among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis.Theoretical calculations suggested the smaller energy barrier for the transformation of O^(*) to OH^(*) and downshift the d-band center of Pt due to the interaction between 4-methylphenylene and the surface metals,thus enhancing the ORR intrinsic activity.Both Pt3Ni and Pt Pd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media.Remarkably,the 4-methylphenylene modified Pt Pd aerogel exhibited the higher halfwave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C.This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts.展开更多
High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achiev...High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achieving an extremely low energy threshold.In this study,first-principles simulations,passivation film preparation,and metal oxide semiconductor(MOS)capacitor characterization were combined to study surface passivation.Theoretical calculations of the energy band structure of the -H,-OH,and -NH_(2) passivation groups on the surface of Ge were performed,and the interface state density and potential with five different passivation groups with N/O atomic ratios were accurately analyzed to obtain a stable surface state.Based on the theoretical calculation results,the surface passivation layers of the Ge_(2)ON_(2) film were prepared via magnetron sputtering in accordance with the optimum atomic ratio structure.The microstructure,C-V,and I-V electrical properties of the layers,and the passivation effect of the Al/Ge_(2)ON_(2)/Ge MOS were characterized to test the interface state density.The mean interface state density obtained by the Terman method was 8.4×10^(11) cm^(-2) eV^(-1).The processing of germanium oxynitrogen passivation films is expected to be used in direct dark matter detection of the HPGe detector surface passivation technology to reduce the detector leakage currents.展开更多
Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rat...Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries.展开更多
Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while exte...Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while extending their lifespan.This paper explores the application of laser-assisted water jet technology in constructing high-quality micro-trap structures on 316L stainless steel,a key material in accelerator manufacturing.The study systematically analyzes the impact of various parameters such as laser repetition frequency,pulse duration,average power,water jet pressure,repeat times,nozzle offset,focal position,offset distance between grooves,and processing speed on the surface morphology of stainless steel.The findings reveal that micro-groove depth increases with higher laser power but decreases with increasing water jet pressure and processing speed.Interestingly,repeat times have minimal effect on depth.On the other hand,micro-groove width increases with higher laser power and repeat times but decreases with processing speed.By optimizing these parameters,the researchers achieved high-quality pound sign-shaped trap structure with consistent dimensions.We tested the secondary electron emission coefficient of the"well"structure.The coefficient is reduced by 0.5 at most compared to before processing,effectively suppressing secondary electron emission.These results offer indispensable insights for the fabrication of micro-trap structures on material surfaces.Laser-assisted water jet technology demonstrates considerable potential in mitigating SEE on metal surfaces.展开更多
Inspired by the Chinese Knotting weave structure,an electromagnetic interference(EMI)nanofiber composite membrane with a twill surface was prepared.Poly(vinyl alcohol-co-ethylene)(Pva-co-PE)nanofibers and twill nylon ...Inspired by the Chinese Knotting weave structure,an electromagnetic interference(EMI)nanofiber composite membrane with a twill surface was prepared.Poly(vinyl alcohol-co-ethylene)(Pva-co-PE)nanofibers and twill nylon fabric were used as the matrix and filter templates,respectively.A Pva-co-PEMXene/silver nanowire(Pva-co-PE-MXene/AgNW,PM_(x)Ag)membrane was successfully prepared using a template method.When the MXene/AgNW content was only 7.4 wt%(PM_(7.4)Ag),the EMI shielding efficiency(SE)of the composite membrane with the oblique twill structure on the surface was 103.9 dB and the surface twill structure improved the EMI by 38.5%.This result was attributed to the pre-interference of the oblique twill structure in the direction of the incident EM wave,which enhanced the probability of the electromagnetic waves randomly colliding with the MXene nanosheets.Simultaneously,the internal reflection and ohmic and resonance losses were enhanced.The PM_(7.4)Ag membrane with the twill structure exhibited both an outstanding tensile strength of 22.8 MPa and EMI SE/t of 3925.2 dB cm^(-1).Moreover,the PM_(x)Ag nanocomposite membranes demonstrated an excellent thermal management performance,hydrophobicity,non-flammability,and performance stability,which was demonstrated by an EMI SE of 97.3%in a high-temperature environment of 140℃.The successful preparation of surface-twill composite membranes makes it difficult to achieve both a low filler content and a high EMI SE in electromagnetic shielding materials.This strategy provides a new approach for preparing thin membranes with excellent EMI properties.展开更多
Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that canno...Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that cannot be obtained by the conventional irradiation scheme of femtosecond laser pulses(single-pulse mode).However,most studies using the GHz burst mode femtosecond laser pulses focus on ablation of materials to achieve high-efficiency and high-quality material removal.In this study,we explore the ability of the GHz burst mode femtosecond laser processing to form laser-induced periodic surface structures(LIPSS)on silicon.It is well known that the direction of LIPSS formed by the single-pulse mode with linearly polarized laser pulses is typically perpendicular to the laser polarization direction.In contrast,we find that the GHz burst mode femtosecond laser(wavelength:1030 nm,intra-pulse duration:220 fs,intra-pulse interval time(intra-pulse repetition rate):205 ps(4.88 GHz),burst pulse repetition rate:200 kHz)creates unique two-dimensional(2D)LIPSS.We regard the formation mechanism of 2D LIPSS as the synergetic contribution of the electromagnetic mechanism and the hydrodynamic mechanism.Specifically,generation of hot spots with highly enhanced electric fields by the localized surface plasmon resonance of subsequent pulses in the bursts within the nanogrooves of one-dimensional LIPSS formed by the preceding pulses creates 2D LIPSS.Additionally,hydrodynamic instability including convection flow determines the final structure of 2D LIPSS.展开更多
Oriented ligand immobilization is one of the most effective strategies used in the design and construction of a high-capacity protein A chromatography. In this work, cysteine was introduced as anchoring sites by subst...Oriented ligand immobilization is one of the most effective strategies used in the design and construction of a high-capacity protein A chromatography. In this work, cysteine was introduced as anchoring sites by substituting a specific residue on Helix Ⅰ, Ⅱ, and at C-terminus of antibody binding domain Z from protein A, respectively, to investigate structural evolution and binding behavior of protein A ligands at liquid-solid interfaces. Among the three affinity dextran-coated Fe_(3)O_(4) magnetic nanoparticles(Fe_(3)O_(4)@Dx MNPs), affinity MNPs with the immobilized ligand via N11C on Helix Ⅰ(Fe_(3)O_(4)@Dx-Z_(1) MNPs) had the highest helical content, and MNPs with the immobilized ligand via G29C on Helix Ⅱ(Fe_(3)O_(4)@Dx-Z_(2) MNPs) had the lowest helical content at the same pHs. It was attributed to less electrostatic attraction of ligand to negatively charged surface on Fe_(3)O_(4)@Dx-Z_(1) MNPs because of less positive charged residues on Helix Ⅰ(K6) than Helix Ⅱ(R27/K35). Among the three affinity MNPs, moreover, the highest affinity to immunoglobulin G(IgG) binding was observed on Fe_(3)O_(4)@Dx-Z_(1) MNPs in isothermal titration calorimetry measurement, further validating greater structural integrity of the ligand on Fe_(3)O_(4)@Dx-Z_(1) MNPs. Finally,the study of IgG binding on MNPs and 96-well plates showed that anchoring sites for ligand immobilization had distinct influences on IgG binding and IgG-mediated antigen binding. This work illustrated that anchoring sites of the ligands had a striking significance for the molecular structure of the ligand at liquid-solid interfaces and raised an important implication for the design and optimization of protein A chromatography and protein A-based immunoassay analysis.展开更多
Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of hi...Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices.Based on the ultra-high basal-plane thermal conductivity,graphene is an ideal candidate for preparing high-performance TIMs,preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM.However,the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory.In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved,another critical factor is the limited actual contact area leading to relatively high contact thermal resistance(20-30 K mm^(2) W^(−1))of the“solid-solid”mating interface formed by the vertical graphene and the rough chip/heat sink.To solve this common problem faced by vertically aligned graphene,in this work,we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces.Based on rational graphene orientation regulation in the middle tier,the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m^(−1) K^(−1).Additionally,we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a“liquid-solid”mating interface,significantly increasing the effective heat transfer area and giving a low contact thermal con-ductivity of 4-6 K mm^(2) W^(−1) under packaging conditions.This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management.展开更多
Lattice structures have drawn much attention in engineering applications due to their lightweight and multi-functional properties.In this work,a mathematical design approach for functionally graded(FG)and helicoidal l...Lattice structures have drawn much attention in engineering applications due to their lightweight and multi-functional properties.In this work,a mathematical design approach for functionally graded(FG)and helicoidal lattice structures with triply periodic minimal surfaces is proposed.Four types of lattice structures including uniform,helicoidal,FG,and combined FG and helicoidal are fabricated by the additive manufacturing technology.The deformation behaviors,mechanical properties,energy absorption,and acoustic properties of lattice samples are thoroughly investigated.The load-bearing capability of helicoidal lattice samples is gradually improved in the plateau stage,leading to the plateau stress and total energy absorption improved by over 26.9%and 21.2%compared to the uniform sample,respectively.This phenomenon was attributed to the helicoidal design reduces the gap in unit cells and enhances fracture resistance.For acoustic properties,the design of helicoidal reduces the resonance frequency and improves the peak of absorption coefficient,while the FG design mainly influences the peak of absorption coefficient.Across broad range of frequency from 1000 to 6300 Hz,the maximum value of absorption coefficient is improved by18.6%-30%,and the number of points higher than 0.6 increased by 55.2%-61.7%by combining the FG and helicoidal designs.This study provides a novel strategy to simultaneously improve energy absorption and sound absorption properties by controlling the internal architecture of lattice structures.展开更多
To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-typ...To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-type structure and microsphere structure is proposed in this paper. The fiber sidepolishing technique converts the coaxial dual-waveguide fiber into a D-type one, and the evanescent wave in the ring core leaks, generating a D-type sensing region;the fiber optic fused ball push technology converts the coaxial dual waveguides into microspheres, and the stimulated cladding mode evanescent wave leaks, producing the microsphere sensing region. By injecting light into the coaxial dual-waveguide middle core alone, the sensor can realize single-stage sensing in the microsphere sensing area;it can also realize dual-channel sensing in the D-type sensing area and microsphere sensing area by injecting light into the ring core. The refractive index measurement ranges for the two channels are 1.333–1.365 and 1.375–1.405, respectively, with detection sensitivities of 981.56 nm/RIU and 4138 nm/RIU. The sensor combines wavelength division multiplexing and space division multiplexing technologies, presenting a novel research concept for multi-channel fiber SPR sensors.展开更多
The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic ...The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic contact elements that are damaged randomly throughout the shearing process due to the natural heterogeneity.The evolution equation of damage variable is developed based on the Weibull function,which is able to cover a rather wide range of distribution shapes by only two parameters,making it applicable for varying scenarios.Accordingly,a statistical damage model is established by incorporating Mohr–Coulomb strength criterion,in which the interfacial residual strength is considered whereby the strain softening behavior can be described.A concept of“semi-softening”characteristic point on shear stress–displacement curve is proposed for effectively modeling the evolution of strain softening.Finally,a series of ring shear tests of the interfaces between fine sea sand and smooth/rough steel surfaces are conducted.The predicted results using the proposed model are compared with experimental data of this study as well as some results from existing literature,indicating that the model has a good performance in modeling the progressive failure and strain softening behavior for various types of soil–structure interfaces.展开更多
The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flamm...The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flammability and ignition.Motivated by this,this study proposed a machining process,named the ultraprecision diamond surface texturing process,to machine the micro/nanostructures on magnesium alloy surfaces.Experimental results showed the various microstructures and sawtooth-shaped nanostructures were successfully generated on the AZ31B magnesium alloy surfaces,demonstrating the effectiveness of this proposed machining process.Furthermore,sawtooth-shaped nanostructures had the function of inducing the optical effect and generating different colors on workpiece surfaces.The colorful letter and colorful flower image were clearly viewed on magnesium alloy surfaces.The corresponding cutting force,chip morphology,and tool wear were systematically investigated to understand the machining mechanism of micro/nanostructures on magnesium alloy surfaces.The proposed machining process can further improve the performances of the magnesium alloy and extend its functions to other fields,such as optics.展开更多
Photocatalytic water splitting using semiconductor photocatalysts is a promising approach for the production of carbon-neutral,sustainable and clean hydrogen fuel.However,the separation and transport of photoinduced c...Photocatalytic water splitting using semiconductor photocatalysts is a promising approach for the production of carbon-neutral,sustainable and clean hydrogen fuel.However,the separation and transport of photoinduced carriers are generally considered to be rate-limiting steps,and their low efficiency remains a major challenge.Therefore,much effort has been devoted to developing new strategies in surface/interface engineering of photocatalysts to improve the dynamics of charge separation/transport.This feature article briefly summarizes recent advances in photocatalyst surface/interface engineering by our research group,which have been achieved through the design of various novel photocatalysts,including interfacial modulation,heterostructure construction,heteroatom doping,single atom and diatom sites.The article is divided into three parts:first,we briefly introduce the three key processes involved in solar water splitting and reveal relationships between the properties of nanostructural photocatalysts and the fundamentals of water splitting;second,we detail methods and strategies for surface and interfacial structures to improve the efficiency of the fundamental processes,especially charge separation;finally,we explore prospects for photocatalytic water splitting applications.This article provides a valuable resource and strategies for researchers currently working in the field of photocatalytic water splitting.展开更多
An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitabl...An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.展开更多
基金supports from the National Natural Science Foundation of China(12074123,12174108)the Foundation of‘Manufacturing beyond limits’of Shanghai‘Talent Program'of Henan Academy of Sciences.
文摘Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.
基金supported by the Bristol Centre for Functional Nanomaterials and GlaxoSmithKline.
文摘Emerging regenerative cell therapies for alveolar bone loss have begun to explore the use of cell laden hydrogels for minimally invasive surgery to treat small and spatially complex maxilla-oral defects.However,the oral cavity presents a unique and challenging environment for in vivo bone tissue engineering,exhibiting both hard and soft periodontal tissue as well as acting as key biocenosis for many distinct microbial communities that interact with both the external environment and internal body systems,which will impact on cell fate and subsequent treatment efficacy.Herein,we design and bioprint a facile 3D in vitro model of a human dentine interface to probe the effect of the dentine surface on human mesenchymal stem cells(hMSCs)encapsulated in a microporous hydrogel bioink.We demonstrate that the dentine substrate induces osteogenic differentiation of encapsulated hMSCs,and that both dentine andβ-tricalcium phosphate substrates stimulate extracellular matrix production and maturation at the gel-media interface,which is distal to the gel-substrate interface.Our findings demonstrate the potential for long-range effects on stem cells by mineralized surfaces during bone tissue engineering and provide a framework for the rapid development of 3D dentine-bone interface models.
基金financially supported by the National Key R&D Program of China(No.2022YFE0121300)the National Natural Science Foundation of China(No.52374376)the Introduction Plan for High-end Foreign Experts(No.G2023105001L)。
文摘As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.
基金Supported by National Natural Science Foundation of China (Grant Nos.52235011,51905352)Shenzhen Municipal Excellent Science and Technology Creative Talent Training Program (Grant No.RCBS20210609103819021)+1 种基金Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No.2023B1515120086)Shenzhen Municipal Science and Technology Planning Project (Grant No.CJGJZD20230724093600001)。
文摘Titanium and its alloys have been widely applied in many biomedical fields because of its excellent mechanical properties,corrosion resistance and good biocompatibility.However,problems such as rejection,shedding and infection will occur after titanium alloy implantation due to the low biological activity of titanium alloy surface.The structures with specific functions,which can enhance osseointegration and antibacterial properties,are fabricated on the surface of titanium implants to improve the biological activity between the titanium implants and human tissues.This paper presents a comprehensive review of recent developments and applications of surface functional structure in titanium and titanium alloy implants.The applications of surface functional structure on different titanium and titanium alloy implants are introduced,and their manufacturing technologies are summarized and compared.Furthermore,the fabrication of various surface functional structures used for titanium and titanium alloy implants is reviewed and analyzed in detail.Finally,the challenges affecting the development of surface functional structures applied in titanium and titanium alloy implants are outlined,and recommendations for future research are presented.
基金Funded by the Science&Technology Project of the Department of Transport of Tibet Autonomous Region(No.XZJTKJ2020[04])。
文摘We conducted a series tests on surface layers of plateau concrete at the ages of 180 and 540 days,including the most superficial cement paste,the 5 mm thick surface mortar,and the 50 mm thick surface concrete.Thermogravimetry and nitrogen absorption porosimetry on cement past,mercury intrusion porosimetry on mortar,and microhardness test on interface transition zone between mortar and coarse aggregate were conducted to evaluate the hydration degree and characterize the micro-structure.Whilst,tests for the rebound strength,abrasion resistance,and chloride ion impenetrability of concrete were conducted to assess the macro-performance.The experimental results show that,affected by the harsh plateau climate,outward surfaces have lower hydration degrees and worse pore structure than inward surfaces.As the hydration of concrete surface is ongoing after the age of 180 days,both the micro-structure and the macro-performance are continuously improved.In the long-term,either the orientation or the depth towards surface does not significantly affect concrete performance.Surface carbonation brings positive effects on mechanical properties but negative effects on the durability.Additionally,standard test result of chloride ion impenetrability is found significantly affected by the atmospheric pressure.For a same batch of concrete,charge passed in plateau regions is obviously lower than that in common regions.
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
基金supported by the National Natural Science Foundation of China(22374119,21902128)the China Postdoctoral Science Foundation(2021M692620)+1 种基金the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(2021-QZ-01)the Key Project of Natural Science Fund of Shaanxi Province(2023-JC-ZD-06)。
文摘The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts.Here,the surface electronic structure of Ptbased noble metal aerogels(NMAs)was modulated by various organic ligands,among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis.Theoretical calculations suggested the smaller energy barrier for the transformation of O^(*) to OH^(*) and downshift the d-band center of Pt due to the interaction between 4-methylphenylene and the surface metals,thus enhancing the ORR intrinsic activity.Both Pt3Ni and Pt Pd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media.Remarkably,the 4-methylphenylene modified Pt Pd aerogel exhibited the higher halfwave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C.This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts.
基金supported by the National Natural Science Foundation of China(No.12005017).
文摘High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achieving an extremely low energy threshold.In this study,first-principles simulations,passivation film preparation,and metal oxide semiconductor(MOS)capacitor characterization were combined to study surface passivation.Theoretical calculations of the energy band structure of the -H,-OH,and -NH_(2) passivation groups on the surface of Ge were performed,and the interface state density and potential with five different passivation groups with N/O atomic ratios were accurately analyzed to obtain a stable surface state.Based on the theoretical calculation results,the surface passivation layers of the Ge_(2)ON_(2) film were prepared via magnetron sputtering in accordance with the optimum atomic ratio structure.The microstructure,C-V,and I-V electrical properties of the layers,and the passivation effect of the Al/Ge_(2)ON_(2)/Ge MOS were characterized to test the interface state density.The mean interface state density obtained by the Terman method was 8.4×10^(11) cm^(-2) eV^(-1).The processing of germanium oxynitrogen passivation films is expected to be used in direct dark matter detection of the HPGe detector surface passivation technology to reduce the detector leakage currents.
基金financially supported by the Natural Science Foundation of Shandong Province(ZR2022QB166,ZR2020KE032)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010600)+3 种基金the Youth Innovation Promotion Association of CAS(2021210)the Foundation of Qingdao Postdoctoral Application Program(Y63302190F)the Natural Science Foundation of Qingdao Institute ofBioenergy and Bioprocess Technology(QIBEBT SZ202101)support from the Max Planck-POSTECH-Hsinchu Center for Complex Phase Materials
文摘Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries.
文摘Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while extending their lifespan.This paper explores the application of laser-assisted water jet technology in constructing high-quality micro-trap structures on 316L stainless steel,a key material in accelerator manufacturing.The study systematically analyzes the impact of various parameters such as laser repetition frequency,pulse duration,average power,water jet pressure,repeat times,nozzle offset,focal position,offset distance between grooves,and processing speed on the surface morphology of stainless steel.The findings reveal that micro-groove depth increases with higher laser power but decreases with increasing water jet pressure and processing speed.Interestingly,repeat times have minimal effect on depth.On the other hand,micro-groove width increases with higher laser power and repeat times but decreases with processing speed.By optimizing these parameters,the researchers achieved high-quality pound sign-shaped trap structure with consistent dimensions.We tested the secondary electron emission coefficient of the"well"structure.The coefficient is reduced by 0.5 at most compared to before processing,effectively suppressing secondary electron emission.These results offer indispensable insights for the fabrication of micro-trap structures on material surfaces.Laser-assisted water jet technology demonstrates considerable potential in mitigating SEE on metal surfaces.
基金supported by the National Natural Science Foundation of China(12205225,52373063,and 51873166)。
文摘Inspired by the Chinese Knotting weave structure,an electromagnetic interference(EMI)nanofiber composite membrane with a twill surface was prepared.Poly(vinyl alcohol-co-ethylene)(Pva-co-PE)nanofibers and twill nylon fabric were used as the matrix and filter templates,respectively.A Pva-co-PEMXene/silver nanowire(Pva-co-PE-MXene/AgNW,PM_(x)Ag)membrane was successfully prepared using a template method.When the MXene/AgNW content was only 7.4 wt%(PM_(7.4)Ag),the EMI shielding efficiency(SE)of the composite membrane with the oblique twill structure on the surface was 103.9 dB and the surface twill structure improved the EMI by 38.5%.This result was attributed to the pre-interference of the oblique twill structure in the direction of the incident EM wave,which enhanced the probability of the electromagnetic waves randomly colliding with the MXene nanosheets.Simultaneously,the internal reflection and ohmic and resonance losses were enhanced.The PM_(7.4)Ag membrane with the twill structure exhibited both an outstanding tensile strength of 22.8 MPa and EMI SE/t of 3925.2 dB cm^(-1).Moreover,the PM_(x)Ag nanocomposite membranes demonstrated an excellent thermal management performance,hydrophobicity,non-flammability,and performance stability,which was demonstrated by an EMI SE of 97.3%in a high-temperature environment of 140℃.The successful preparation of surface-twill composite membranes makes it difficult to achieve both a low filler content and a high EMI SE in electromagnetic shielding materials.This strategy provides a new approach for preparing thin membranes with excellent EMI properties.
基金supported by MEXT Quantum Leap Flagship Program(MEXT Q-LEAP)Grant Number JPMXS0118067246.
文摘Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that cannot be obtained by the conventional irradiation scheme of femtosecond laser pulses(single-pulse mode).However,most studies using the GHz burst mode femtosecond laser pulses focus on ablation of materials to achieve high-efficiency and high-quality material removal.In this study,we explore the ability of the GHz burst mode femtosecond laser processing to form laser-induced periodic surface structures(LIPSS)on silicon.It is well known that the direction of LIPSS formed by the single-pulse mode with linearly polarized laser pulses is typically perpendicular to the laser polarization direction.In contrast,we find that the GHz burst mode femtosecond laser(wavelength:1030 nm,intra-pulse duration:220 fs,intra-pulse interval time(intra-pulse repetition rate):205 ps(4.88 GHz),burst pulse repetition rate:200 kHz)creates unique two-dimensional(2D)LIPSS.We regard the formation mechanism of 2D LIPSS as the synergetic contribution of the electromagnetic mechanism and the hydrodynamic mechanism.Specifically,generation of hot spots with highly enhanced electric fields by the localized surface plasmon resonance of subsequent pulses in the bursts within the nanogrooves of one-dimensional LIPSS formed by the preceding pulses creates 2D LIPSS.Additionally,hydrodynamic instability including convection flow determines the final structure of 2D LIPSS.
基金supported by the National Natural Science Foundation of China (Nos. 21878221 and 21476166)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 21621004)。
文摘Oriented ligand immobilization is one of the most effective strategies used in the design and construction of a high-capacity protein A chromatography. In this work, cysteine was introduced as anchoring sites by substituting a specific residue on Helix Ⅰ, Ⅱ, and at C-terminus of antibody binding domain Z from protein A, respectively, to investigate structural evolution and binding behavior of protein A ligands at liquid-solid interfaces. Among the three affinity dextran-coated Fe_(3)O_(4) magnetic nanoparticles(Fe_(3)O_(4)@Dx MNPs), affinity MNPs with the immobilized ligand via N11C on Helix Ⅰ(Fe_(3)O_(4)@Dx-Z_(1) MNPs) had the highest helical content, and MNPs with the immobilized ligand via G29C on Helix Ⅱ(Fe_(3)O_(4)@Dx-Z_(2) MNPs) had the lowest helical content at the same pHs. It was attributed to less electrostatic attraction of ligand to negatively charged surface on Fe_(3)O_(4)@Dx-Z_(1) MNPs because of less positive charged residues on Helix Ⅰ(K6) than Helix Ⅱ(R27/K35). Among the three affinity MNPs, moreover, the highest affinity to immunoglobulin G(IgG) binding was observed on Fe_(3)O_(4)@Dx-Z_(1) MNPs in isothermal titration calorimetry measurement, further validating greater structural integrity of the ligand on Fe_(3)O_(4)@Dx-Z_(1) MNPs. Finally,the study of IgG binding on MNPs and 96-well plates showed that anchoring sites for ligand immobilization had distinct influences on IgG binding and IgG-mediated antigen binding. This work illustrated that anchoring sites of the ligands had a striking significance for the molecular structure of the ligand at liquid-solid interfaces and raised an important implication for the design and optimization of protein A chromatography and protein A-based immunoassay analysis.
基金flnancial support by the National Natural Science Foundation of China (52102055, 5227020331, 52075527)National Key R&D Program of China (2017YFB0406000 and 2017YFE0128600)+8 种基金the Project of the Chinese Academy of Sciences (XDC07030100, XDA22020602, ZDKYYQ20200001 and ZDRW-CN-2019-3)CAS Youth Innovation Promotion Association (2020301)Science and Technology Major Project of Ningbo (2021Z120, 2021Z115, 2022Z084, 2018B10046 and 2016S1002)the Natural Science Foundation of Ningbo (2017A610010)Foundation of State Key Laboratory of Solid lubrication (LSL-1912)China Postdoctoral Science Foundation (2020M681965, 2022M713243)National Key Laboratory of Science and Technology on Advanced Composites in Special Environments (6142905192806)K.C. Wong Education Foundation (GJTD-2019-13)the 3315 Program of Ningbo for financial support
文摘Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices.Based on the ultra-high basal-plane thermal conductivity,graphene is an ideal candidate for preparing high-performance TIMs,preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM.However,the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory.In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved,another critical factor is the limited actual contact area leading to relatively high contact thermal resistance(20-30 K mm^(2) W^(−1))of the“solid-solid”mating interface formed by the vertical graphene and the rough chip/heat sink.To solve this common problem faced by vertically aligned graphene,in this work,we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces.Based on rational graphene orientation regulation in the middle tier,the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m^(−1) K^(−1).Additionally,we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a“liquid-solid”mating interface,significantly increasing the effective heat transfer area and giving a low contact thermal con-ductivity of 4-6 K mm^(2) W^(−1) under packaging conditions.This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management.
基金supported by the NUS R&G Postdoc Fellowship Program (No.A-0000065-76-00)the China Scholarship Council (No.202006050088)。
文摘Lattice structures have drawn much attention in engineering applications due to their lightweight and multi-functional properties.In this work,a mathematical design approach for functionally graded(FG)and helicoidal lattice structures with triply periodic minimal surfaces is proposed.Four types of lattice structures including uniform,helicoidal,FG,and combined FG and helicoidal are fabricated by the additive manufacturing technology.The deformation behaviors,mechanical properties,energy absorption,and acoustic properties of lattice samples are thoroughly investigated.The load-bearing capability of helicoidal lattice samples is gradually improved in the plateau stage,leading to the plateau stress and total energy absorption improved by over 26.9%and 21.2%compared to the uniform sample,respectively.This phenomenon was attributed to the helicoidal design reduces the gap in unit cells and enhances fracture resistance.For acoustic properties,the design of helicoidal reduces the resonance frequency and improves the peak of absorption coefficient,while the FG design mainly influences the peak of absorption coefficient.Across broad range of frequency from 1000 to 6300 Hz,the maximum value of absorption coefficient is improved by18.6%-30%,and the number of points higher than 0.6 increased by 55.2%-61.7%by combining the FG and helicoidal designs.This study provides a novel strategy to simultaneously improve energy absorption and sound absorption properties by controlling the internal architecture of lattice structures.
基金supported by the National Natural Science Foundation of China (Grant No. 61705025)the Natural Science Foundation of Chongqing (Grant Nos. cstc2019jcyjmsxm X043 and cstc2018jcyj AX0817)+2 种基金the Fund from the Science and Technology Project Affiliated to the Education Department of Chongqing Municipality (Grant Nos. KJQN201801217, KJQN202001214, KJQN201901226, and KJ1710247)the Fund from Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir Area (Grant Nos. ZD2020A0103 and ZD2020A0102)the Fundamental Research Funds for Chongqing Three Gorges University of China (Grant No. 19ZDPY08)。
文摘To address the restriction of fiber-optic surface plasmon resonance(SPR) sensors in the field of multi-sample detection, a novel dual-channel fiber-optic SPR sensor based on the cascade of coaxial dual-waveguide D-type structure and microsphere structure is proposed in this paper. The fiber sidepolishing technique converts the coaxial dual-waveguide fiber into a D-type one, and the evanescent wave in the ring core leaks, generating a D-type sensing region;the fiber optic fused ball push technology converts the coaxial dual waveguides into microspheres, and the stimulated cladding mode evanescent wave leaks, producing the microsphere sensing region. By injecting light into the coaxial dual-waveguide middle core alone, the sensor can realize single-stage sensing in the microsphere sensing area;it can also realize dual-channel sensing in the D-type sensing area and microsphere sensing area by injecting light into the ring core. The refractive index measurement ranges for the two channels are 1.333–1.365 and 1.375–1.405, respectively, with detection sensitivities of 981.56 nm/RIU and 4138 nm/RIU. The sensor combines wavelength division multiplexing and space division multiplexing technologies, presenting a novel research concept for multi-channel fiber SPR sensors.
基金financially supported by the China Postdoctoral Science Foundation(Grant No.2023M732997)the National Natural Science Foundation of China(Grant Nos.51890912,52008268)Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering,Hohai University(Grant No.2023007)。
文摘The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic contact elements that are damaged randomly throughout the shearing process due to the natural heterogeneity.The evolution equation of damage variable is developed based on the Weibull function,which is able to cover a rather wide range of distribution shapes by only two parameters,making it applicable for varying scenarios.Accordingly,a statistical damage model is established by incorporating Mohr–Coulomb strength criterion,in which the interfacial residual strength is considered whereby the strain softening behavior can be described.A concept of“semi-softening”characteristic point on shear stress–displacement curve is proposed for effectively modeling the evolution of strain softening.Finally,a series of ring shear tests of the interfaces between fine sea sand and smooth/rough steel surfaces are conducted.The predicted results using the proposed model are compared with experimental data of this study as well as some results from existing literature,indicating that the model has a good performance in modeling the progressive failure and strain softening behavior for various types of soil–structure interfaces.
基金supported by the Special Actions for Developing High-performance Manufacturing of Ministry of Industry and Information Technology(Grant No.:TC200H02J)the Research Grants Council of the Hong Kong Special Ad-ministrative Region,China(Project No.:PolyU 152125/18E)+1 种基金the National Natural Science Foundation of China(Project No.:U19A20104)the Research Committee of The Hong Kong Polytechnic University(Project Code G-RK2V).
文摘The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flammability and ignition.Motivated by this,this study proposed a machining process,named the ultraprecision diamond surface texturing process,to machine the micro/nanostructures on magnesium alloy surfaces.Experimental results showed the various microstructures and sawtooth-shaped nanostructures were successfully generated on the AZ31B magnesium alloy surfaces,demonstrating the effectiveness of this proposed machining process.Furthermore,sawtooth-shaped nanostructures had the function of inducing the optical effect and generating different colors on workpiece surfaces.The colorful letter and colorful flower image were clearly viewed on magnesium alloy surfaces.The corresponding cutting force,chip morphology,and tool wear were systematically investigated to understand the machining mechanism of micro/nanostructures on magnesium alloy surfaces.The proposed machining process can further improve the performances of the magnesium alloy and extend its functions to other fields,such as optics.
基金supported by the National Natural Science Foundation of China(22225604,22076082,22176140)the Frontiers Science Center for New Organic Matter(63181206)Haihe Laboratory of Sustainable Chemical Transformations。
文摘Photocatalytic water splitting using semiconductor photocatalysts is a promising approach for the production of carbon-neutral,sustainable and clean hydrogen fuel.However,the separation and transport of photoinduced carriers are generally considered to be rate-limiting steps,and their low efficiency remains a major challenge.Therefore,much effort has been devoted to developing new strategies in surface/interface engineering of photocatalysts to improve the dynamics of charge separation/transport.This feature article briefly summarizes recent advances in photocatalyst surface/interface engineering by our research group,which have been achieved through the design of various novel photocatalysts,including interfacial modulation,heterostructure construction,heteroatom doping,single atom and diatom sites.The article is divided into three parts:first,we briefly introduce the three key processes involved in solar water splitting and reveal relationships between the properties of nanostructural photocatalysts and the fundamentals of water splitting;second,we detail methods and strategies for surface and interfacial structures to improve the efficiency of the fundamental processes,especially charge separation;finally,we explore prospects for photocatalytic water splitting applications.This article provides a valuable resource and strategies for researchers currently working in the field of photocatalytic water splitting.
文摘An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting.