Smart manufacturing and Industry 4.0 are transforming traditional manufacturing processes by utilizing innovative technologies such as the artificial intelligence(AI)and internet of things(IoT)to enhance efficiency,re...Smart manufacturing and Industry 4.0 are transforming traditional manufacturing processes by utilizing innovative technologies such as the artificial intelligence(AI)and internet of things(IoT)to enhance efficiency,reduce costs,and ensure product quality.In light of the recent advancement of Industry 4.0,identifying defects has become important for ensuring the quality of products during the manufacturing process.In this research,we present an ensemble methodology for accurately classifying hot rolled steel surface defects by combining the strengths of four pre-trained convolutional neural network(CNN)architectures:VGG16,VGG19,Xception,and Mobile-Net V2,compensating for their individual weaknesses.We evaluated our methodology on the Xsteel surface defect dataset(XSDD),which comprises seven different classes.The ensemble methodology integrated the predictions of individual models through two methods:model averaging and weighted averaging.Our evaluation showed that the model averaging ensemble achieved an accuracy of 98.89%,a recall of 98.92%,a precision of 99.05%,and an F1-score of 98.97%,while the weighted averaging ensemble reached an accuracy of 99.72%,a recall of 99.74%,a precision of 99.67%,and an F1-score of 99.70%.The proposed weighted averaging ensemble model outperformed the model averaging method and the individual models in detecting defects in terms of accuracy,recall,precision,and F1-score.Comparative analysis with recent studies also showed the superior performance of our methodology.展开更多
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th...Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.展开更多
BACKGROUND The induced-membrane technique was initially described by Masquelet as an effective treatment for large bone defects,especially those caused by infection.Here,we report a case of chronic osteomyelitis of th...BACKGROUND The induced-membrane technique was initially described by Masquelet as an effective treatment for large bone defects,especially those caused by infection.Here,we report a case of chronic osteomyelitis of the radius associated with a 9 cm bone defect,which was filled with a large allogeneic cortical bone graft from a bone bank.Complete bony union was achieved after 14 months of follow-up.Previous studies have used autogenous bone as the primary bone source for the Masquelet technique;in our case,the exclusive use of allografts is as successful as the use of autologous bone grafts.With the advent of bone banks,it is possible to obtain an unlimited amount of allograft,and the Masquelet technique may be further improved based on this new way of bone grafting.CASE SUMMARY In this study,we reported a case of repair of a long bone defect in a 40-year-old male patient,which was characterized by the utilization of allograft cortical bone combined with the Masquelet technique for the treatment of the patient's long bone defect in the forearm.The patient's results of functional recovery of the forearm were surprising,which further deepens the scope of application of Masquelet technique and helps to strengthen the efficacy of Masquelet technique in the treatment of long bones indeed.CONCLUSION Allograft cortical bone combined with the Masquelet technique provides a new method of treatment to large bone defect.展开更多
Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is stil...Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis.展开更多
Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during t...Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.展开更多
Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,t...Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs.展开更多
Owing to the intrinsically sluggish kinetics of urea oxidation reaction(UOR)involving a six-electron transfer process,developing efficient UOR electrocatalyst is a great challenge remained to be overwhelmed.Herein,by ...Owing to the intrinsically sluggish kinetics of urea oxidation reaction(UOR)involving a six-electron transfer process,developing efficient UOR electrocatalyst is a great challenge remained to be overwhelmed.Herein,by taking advantage of 2-Methylimidazole,of which is a kind of alkali in water and owns strong coordination ability to Co^(2+)in methanol,trace Co(1.0 mol%)addition was found to induce defect engineering onα-Ni(OH)_(2)in a dual-solvent system of water and methanol.Physical characterization results revealed that the synthesized electrocatalyst(WM-Ni_(0.99)Co_(0.01)(OH)_(2))was a kind of defective nanosheet with thickness around 5-6 nm,attributing to the synergistic effect of Co doping and defect engineering,its electron structure was finely altered,and its specific surface a rea was tremendously enlarged from 68 to 172.3 m^(2)g^(-1).With all these merits,its overpotential to drive 10 mA cm^(-2)was reduced by 110 mV.Besides,the interfacial behavior of UOR was also well deciphered by operando electrochemical impedance spectroscopy.展开更多
As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex b...As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex backgrounds and defects of varying shapes and sizes.To address this issue,this paper proposes YOLO-DD,a defect detectionmodel based on YOLOv5 that is effective and robust.To improve the feature extraction process and better capture global information,the vanilla YOLOv5 is augmented with a new module called Relative-Distance-Aware Transformer(RDAT).Additionally,an Information Gap Filling Strategy(IGFS)is proposed to improve the fusion of features at different scales.The classic lightweight attention mechanism Squeeze-and-Excitation(SE)module is also incorporated into the neck section to enhance feature expression and improve the model’s performance.Experimental results on the NEU-DET dataset demonstrate that YOLO-DDachieves competitive results compared to state-of-the-art methods,with a 2.0% increase in accuracy compared to the original YOLOv5,achieving 82.41% accuracy and38.25FPS(framesper second).Themodel is also testedon a self-constructed fabric defect dataset,and the results show that YOLO-DD is more stable and has higher accuracy than the original YOLOv5,demonstrating its stability and generalization ability.The high efficiency of YOLO-DD enables it to meet the requirements of industrial high accuracy and real-time detection.展开更多
Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.De...Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.Designing practical electrocatalysts by introducing defect engineering,such as hybrid structure,surface vacancies,functional modification,and structural distortions,is proven to be a dependable solution for fabricating electrocatalysts with high catalytic activities,robust stability,and good practicability.This review is an overview of some relevant reports about the effects of defect engineering on the electrocatalytic water splitting performance of electrocatalysts.In detail,the types of defects,the preparation and characterization methods,and catalytic performances of electrocatalysts are presented,emphasizing the effects of the introduced defects on the electronic structures of electrocatalysts and the optimization of the intermediates'adsorption energy throughout the review.Finally,the existing challenges and personal perspectives of possible strategies for enhancing the catalytic performances of electrocatalysts are proposed.An in-depth understanding of the effects of defect engineering on the catalytic performance of electrocatalysts will light the way to design high-efficiency electrocatalysts for water splitting and other possible applications.展开更多
Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki...Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.展开更多
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende...Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.展开更多
Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the pres...Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.展开更多
The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect predicti...The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect prediction studies,transfer learning was effective in solving the problem of inconsistent project data distribution.However,target projects often lack sufficient data,which affects the performance of the transfer learning model.In addition,the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model.To address these problems,this article propose a software defect prediction method based on stable learning(SDP-SL)that combines code visualization techniques and residual networks.This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images.During the model training process,target project data are not required as prior knowledge.Following the principles of stable learning,this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features,thereby capturing the“invariance mechanism”within the data.This approach explores the genuine relationship between code defect features and labels,thereby enhancing defect prediction performance.To evaluate the performance of SDP-SL,this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset.The experimental results demonstrated that in terms of the F-measure,the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%.In cross-project defect prediction,the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods.Therefore,SDP-SL can effectively enhance within-and cross-project defect predictions.展开更多
To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different ...To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different scales of strip surface defects,a strip steel surface defect detection algorithm based on improved Faster R-CNN is proposed.Firstly,the residual convolution module is inserted into the Swin Transformer network module to form the RC-Swin Transformer network module,and the RC-Swin Transformer module is introduced into the backbone network of the traditional Faster R-CNN to enhance the ability of the network to extract the global feature information of the image and adapt to the complex shape of the strip steel surface defect.To improve the attention of the network to defects in the image,a CBAM-BiFPN network module is designed,and then the backbone network is combined with the CBAM-BiFPN network to realize the de-tection and fusion of multi-scale features.The RoI align layer is used instead of the RoI pooling layer to improve the accuracy of defect loca-tion.Finally,Soft NMS is used to achieve non-maximum suppression and remove redundant boxes.In the comparative experiment on the NEU-DET dataset,the improved algorithm improves the mean average precision by 4.2%compared with the Faster R-CNN algorithm,and also improves the average precision by 6.1%and 6.7%for crazing defect and rolled-in scale defect,which are difficult to detect with the Faster R-CNN algorithm.The experiments show that the improvements proposed in the paper effectively improve the detection accuracy of the algorithm and have certain practical value.展开更多
Background:Given the pervasive issues of obesity and diabetes both in Puerto Rico and the broader United States,there is a compelling need to investigate the intricate interplay among body mass index(BMI),pregesta-tio...Background:Given the pervasive issues of obesity and diabetes both in Puerto Rico and the broader United States,there is a compelling need to investigate the intricate interplay among body mass index(BMI),pregesta-tional,and gestational maternal diabetes,and their potential impact on the occurrence of congenital heart defects(CHD)during neonatal development.Methods:Using the comprehensive System of Vigilance and Surveillance of Congenital Defects in Puerto Rico,we conducted a focused analysis on neonates diagnosed with CHD between 2016 and 2020.Our assessment encompassed a range of variables,including maternal age,gestational age,BMI,pregestational diabetes,gestational diabetes,hypertension,history of abortion,and presence of preeclampsia.Results:A cohort of 673 patients was included in our study.The average maternal age was 26 years,within a range of 22 to 32 years.The mean gestational age measured 39 weeks,with a median span of 38 to 39 weeks.Of the 673 patients,274(41%)mothers gave birth to neonates diagnosed with CHD.Within this group,22 cases were linked to pre-gestational diabetes,while 202 were not;20 instances were associated with gestational diabetes,compared to 200 without;and 148 cases exhibited an overweight or obese BMI,whereas 126 displayed a normal BMI.Conclusion:We identified a statistically significant correlation between pre-gestational diabetes mellitus and the occurrence of CHD.However,our analysis did not show a statistically significant association between maternal BMI and the likelihood of CHD.These results may aid in developing effective strategies to prevent and manage CHD in neonates.展开更多
BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown...BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown that decellularized extracellular matrix(ECM)derived from autologous,allogenic,or xenogeneic mesenchymal stromal cells(MSCs)can effectively restore osteochondral integrity.AIM To determine whether the decellularized ECM of antler reserve mesenchymal cells(RMCs),a xenogeneic material from antler stem cells,is superior to the currently available treatments for osteochondral defects.METHODS We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70%confluence;50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition.Decellularized sheets of adipocyte-derived MSCs(aMSCs)and antlerogenic periosteal cells(another type of antler stem cells)were used as the controls.Three weeks after ascorbic acid stimulation,the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints.RESULTS The defects were successfully repaired by applying the ECM-sheets.The highest quality of repair was achieved in the RMC-ECM group both in vitro(including cell attachment and proliferation),and in vivo(including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues).Notably,the antler-stem-cell-derived ECM(xenogeneic)performed better than the aMSC-ECM(allogenic),while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells.CONCLUSION Decellularized xenogeneic ECM derived from the antler stem cell,particularly the active form(RMC-ECM),can achieve high quality repair/reconstruction of osteochondral defects,suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship.展开更多
Background:Atrial septal defect(ASD)is a common form of adult congenital heart disease that can lead to long-term adverse outcomes if left untreated.Early closure of ASD has been associated with excellent outcomes and...Background:Atrial septal defect(ASD)is a common form of adult congenital heart disease that can lead to long-term adverse outcomes if left untreated.Early closure of ASD has been associated with excellent outcomes and lower complication rates.However,there is limited evidence regarding the prognosis of ASD closure in older adults.This study aims to evaluate the mortality rates in older ASD patients with and without closure.Methods:A retrospective cohort study was conducted on patients aged 40 years or older with ASD between 2001 and 2017.Patients were followed up to assess all-cause mortality.Univariable and multivariable analyses were performed to identify the predictors of mortality.A p-value of<0.05 was considered statistically significant.Results:The cohort consisted of 450 patients(mean age 56.6±10.4 years,77.3%female),with 66%aged between 40 and 60 years,and 34%over 60 years.Within the cohort,299 underwent ASD closure(201 with transcatheter and 98 with surgical closure).During the median follow-up duration of 7.9 years,51 patients died.The unadjusted cumulative 10-year rate of mortality was 3%in patients with ASD closure,and 28%in patients without ASD closure(log-rank p<0.001).Multivariable analysis revealed that age(hazard ratio[HR]1.04,95%confidence interval[CI]1.006–1.06,p=0.01),NYHA class(HR 2.75,95%CI 1.63–4.62,p<0.001),blood urea nitrogen(BUN)(HR 1.07,95%CI 1.03–1.12,p<0.001),right ventricular systolic pressure(RVSP)(HR 1.07,95%CI 1.003–1.04,p=0.01),and lack of ASD closure(HR 15.12,95%CI 5.63–40.59,p<0.001)were independently associated with mortality.Conclusion:ASD closure demonstrated favorable outcomes in older patients.Age,NYHA class,BUN,RVSP,and lack of ASD closure were identified as independent factors linked to mortality in this population.展开更多
The rapid advancement of halide-based hybrid perovskite materials has garnered significant research attention,particularly in the domain of photovoltaic technology.Owing to their exceptional optoelec-tronic properties...The rapid advancement of halide-based hybrid perovskite materials has garnered significant research attention,particularly in the domain of photovoltaic technology.Owing to their exceptional optoelec-tronic properties,they demonstrated power conversion efficiency(PcE)of over 25%in single junction solar cells.Despite the notable progress in PCE over the past decade,the inherent high defect density pre-senting in perovskite materials gives rise to several loss mechanisms and associated ion migration in per-ovskite solar cells(PsCs)during operational conditions.These factors collectively contribute to a significant stability challenge in PsCs,placing their longevity far behind for commercialization.While numerous reports have explored defects,ion migration,and their impacts on device performance,a com-prehensive correlation between the types of defects and the degradation kinetics of perovskite materials and PsCs has been lacking.In this context,this review aims to provide a comprehensive overview of the origins of defects and ion migration,emphasizing their correlation with the degradation kinetics of per-ovskite materials and PsCs,leveraging reliable characterization techniques.Furthermore,these charac-terization techniques are intended to comprehend loss mechanisms by different passivation approaches to enhance the durability and PCE of PSCs.展开更多
Niobium pentoxide(Nb_(2)O_(5))is deemed one of the promising anode materials for lithium-ion batteries(LIBs)for its outstanding intrinsic fast Li-(de)intercalation kinetics.The specific capacity,however,is still limit...Niobium pentoxide(Nb_(2)O_(5))is deemed one of the promising anode materials for lithium-ion batteries(LIBs)for its outstanding intrinsic fast Li-(de)intercalation kinetics.The specific capacity,however,is still limited,because the(de)intercalation of excessive Li-ions brings the undesired stress to damage Nb_(2)O_(5) crystals.To increase the capacity of Nb_(2)O_(5) and alleviate the lattice distortion caused by stress,numerous homogeneous H-and M-phases junction interfaces were proposed to produce coercive stress within theNb_(2)O_(5)crystals.Such interfaces bring about rich oxygen vacancies with structural shrinkage tendency,which pre-generate coercive stress to resist the expansion stress caused by excessive Li-ions intercalation.Therefore,the synthesized Nb_(2)O_(5) achieves the highest lithium storage capacity of 315 mA h g−1 to date,and exhibits high-rate performance(118 mA h g^(-1) at 20 C)as well as excellent cycling stability(138 mA h g^(-1) at 10 C after 600 cycles).展开更多
Minimally invasive approaches for cardiac surgery in children have been lagging in comparison to the adult world.A wide range of the most common congenital heart defects in infants and children can be repaired suc-ces...Minimally invasive approaches for cardiac surgery in children have been lagging in comparison to the adult world.A wide range of the most common congenital heart defects in infants and children can be repaired suc-cessfully through a variety of non-sternotomy incisions.This has been shown to be associated with superior cos-metic results,shorter hospital stays,and rapid return to full activity compared to sternotomy.These approaches have been around for decades,but they have not been widely adopted for a variety of reasons.Right axillary thor-acotomy is one of these approaches that we believe should be the new standard for the repair of a wide variety of heart defects in children and will be the focus of our current review.展开更多
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2022R1I1A3063493).
文摘Smart manufacturing and Industry 4.0 are transforming traditional manufacturing processes by utilizing innovative technologies such as the artificial intelligence(AI)and internet of things(IoT)to enhance efficiency,reduce costs,and ensure product quality.In light of the recent advancement of Industry 4.0,identifying defects has become important for ensuring the quality of products during the manufacturing process.In this research,we present an ensemble methodology for accurately classifying hot rolled steel surface defects by combining the strengths of four pre-trained convolutional neural network(CNN)architectures:VGG16,VGG19,Xception,and Mobile-Net V2,compensating for their individual weaknesses.We evaluated our methodology on the Xsteel surface defect dataset(XSDD),which comprises seven different classes.The ensemble methodology integrated the predictions of individual models through two methods:model averaging and weighted averaging.Our evaluation showed that the model averaging ensemble achieved an accuracy of 98.89%,a recall of 98.92%,a precision of 99.05%,and an F1-score of 98.97%,while the weighted averaging ensemble reached an accuracy of 99.72%,a recall of 99.74%,a precision of 99.67%,and an F1-score of 99.70%.The proposed weighted averaging ensemble model outperformed the model averaging method and the individual models in detecting defects in terms of accuracy,recall,precision,and F1-score.Comparative analysis with recent studies also showed the superior performance of our methodology.
基金support of the National Natural Science Foundation of China(Grant No.22225801,22178217 and 22308216)supported by the Fundamental Research Funds for the Central Universities,conducted at Tongji University.
文摘Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.
文摘BACKGROUND The induced-membrane technique was initially described by Masquelet as an effective treatment for large bone defects,especially those caused by infection.Here,we report a case of chronic osteomyelitis of the radius associated with a 9 cm bone defect,which was filled with a large allogeneic cortical bone graft from a bone bank.Complete bony union was achieved after 14 months of follow-up.Previous studies have used autogenous bone as the primary bone source for the Masquelet technique;in our case,the exclusive use of allografts is as successful as the use of autologous bone grafts.With the advent of bone banks,it is possible to obtain an unlimited amount of allograft,and the Masquelet technique may be further improved based on this new way of bone grafting.CASE SUMMARY In this study,we reported a case of repair of a long bone defect in a 40-year-old male patient,which was characterized by the utilization of allograft cortical bone combined with the Masquelet technique for the treatment of the patient's long bone defect in the forearm.The patient's results of functional recovery of the forearm were surprising,which further deepens the scope of application of Masquelet technique and helps to strengthen the efficacy of Masquelet technique in the treatment of long bones indeed.CONCLUSION Allograft cortical bone combined with the Masquelet technique provides a new method of treatment to large bone defect.
基金the support of the Australia Research Council (ARC) through the Discovery Project (DP230101040)the Natural Science Foundation of Shandong Province (ZR2022QB139, No. ZR2020KF025)+3 种基金the Starting Research Fund (Grant No. 20210122) from the Ludong Universitythe Natural Science Foundation of China (12274190) from the Ludong Universitythe support of the Shandong Youth Innovation Team Introduction and Education Programthe Special Fund for Taishan Scholars Project (No. tsqn202211186) in Shandong Province。
文摘Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis.
基金funds from the National Natural Science Foundation of China(51772082 and 51804106)the Natural Science Foundation of Hunan Province(2023JJ10005)
文摘Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.
基金supported by the China Scholarship Council (CSC) (No.202206020149)the Academic Excellence Foundation of BUAA for PhD Students,the Funding Project of Science and Technology on Reliability and Environmental Engineering Laboratory (No.6142004210106).
文摘Sintered silver nanoparticles(AgNPs)arewidely used in high-power electronics due to their exceptional properties.However,the material reliability is significantly affected by various microscopic defects.In this work,the three primary micro-defect types at potential stress concentrations in sintered AgNPs are identified,categorized,and quantified.Molecular dynamics(MD)simulations are employed to observe the failure evolution of different microscopic defects.The dominant mechanisms responsible for this evolution are dislocation nucleation and dislocation motion.At the same time,this paper clarifies the quantitative relationship between the tensile strain amount and the failure mechanism transitions of the three defect types by defining key strain points.The impact of defect types on the failure process is also discussed.Furthermore,traction-separation curves extracted from microscopic defect evolutions serve as a bridge to connect the macro-scale model.The validity of the crack propagation model is confirmed through tensile tests.Finally,we thoroughly analyze how micro-defect types influence macro-crack propagation and attempt to find supporting evidence from the MD model.Our findings provide a multi-perspective reference for the reliability analysis of sintered AgNPs.
基金supported by the Central South University Scientific Research Foundation for Post-doctor(Grant No.:140050052)the National Natural Science Foundation of China(Grant No.:52204325)
文摘Owing to the intrinsically sluggish kinetics of urea oxidation reaction(UOR)involving a six-electron transfer process,developing efficient UOR electrocatalyst is a great challenge remained to be overwhelmed.Herein,by taking advantage of 2-Methylimidazole,of which is a kind of alkali in water and owns strong coordination ability to Co^(2+)in methanol,trace Co(1.0 mol%)addition was found to induce defect engineering onα-Ni(OH)_(2)in a dual-solvent system of water and methanol.Physical characterization results revealed that the synthesized electrocatalyst(WM-Ni_(0.99)Co_(0.01)(OH)_(2))was a kind of defective nanosheet with thickness around 5-6 nm,attributing to the synergistic effect of Co doping and defect engineering,its electron structure was finely altered,and its specific surface a rea was tremendously enlarged from 68 to 172.3 m^(2)g^(-1).With all these merits,its overpotential to drive 10 mA cm^(-2)was reduced by 110 mV.Besides,the interfacial behavior of UOR was also well deciphered by operando electrochemical impedance spectroscopy.
基金supported in part by the National Natural Science Foundation of China under Grants 32171909,51705365,52205254The Guangdong Basic and Applied Basic Research Foundation under Grants 2020B1515120050,2023A1515011255+2 种基金The Guangdong Key R&D projects under Grant 2020B0404030001the Scientific Research Projects of Universities in Guangdong Province under Grant 2020KCXTD015The Ji Hua Laboratory Open Project under Grant X220931UZ230.
文摘As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex backgrounds and defects of varying shapes and sizes.To address this issue,this paper proposes YOLO-DD,a defect detectionmodel based on YOLOv5 that is effective and robust.To improve the feature extraction process and better capture global information,the vanilla YOLOv5 is augmented with a new module called Relative-Distance-Aware Transformer(RDAT).Additionally,an Information Gap Filling Strategy(IGFS)is proposed to improve the fusion of features at different scales.The classic lightweight attention mechanism Squeeze-and-Excitation(SE)module is also incorporated into the neck section to enhance feature expression and improve the model’s performance.Experimental results on the NEU-DET dataset demonstrate that YOLO-DDachieves competitive results compared to state-of-the-art methods,with a 2.0% increase in accuracy compared to the original YOLOv5,achieving 82.41% accuracy and38.25FPS(framesper second).Themodel is also testedon a self-constructed fabric defect dataset,and the results show that YOLO-DD is more stable and has higher accuracy than the original YOLOv5,demonstrating its stability and generalization ability.The high efficiency of YOLO-DD enables it to meet the requirements of industrial high accuracy and real-time detection.
基金National Natural Science Foundation of China,Grant/Award Number:52271200Scientific and Technological Innovation Foundation of Foshan,Grant/Award Number:BK20BE009+1 种基金the Fundamental Research Funds for the Central Universities,Grant/Award Number:FRF-TP-18-079A1Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110460,ORCID:http://orcid.org/0000-0002-0870-2248。
文摘Electrocatalytic water splitting seems to be an efficient strategy to deal with increasingly serious environmental problems and energy crises but still suffers from the lack of stable and efficient electrocatalysts.Designing practical electrocatalysts by introducing defect engineering,such as hybrid structure,surface vacancies,functional modification,and structural distortions,is proven to be a dependable solution for fabricating electrocatalysts with high catalytic activities,robust stability,and good practicability.This review is an overview of some relevant reports about the effects of defect engineering on the electrocatalytic water splitting performance of electrocatalysts.In detail,the types of defects,the preparation and characterization methods,and catalytic performances of electrocatalysts are presented,emphasizing the effects of the introduced defects on the electronic structures of electrocatalysts and the optimization of the intermediates'adsorption energy throughout the review.Finally,the existing challenges and personal perspectives of possible strategies for enhancing the catalytic performances of electrocatalysts are proposed.An in-depth understanding of the effects of defect engineering on the catalytic performance of electrocatalysts will light the way to design high-efficiency electrocatalysts for water splitting and other possible applications.
基金National Key Research and Development Program of China(Nos.2022YFB4700600 and 2022YFB4700605)National Natural Science Foundation of China(Nos.61771123 and 62171116)+1 种基金Fundamental Research Funds for the Central UniversitiesGraduate Student Innovation Fund of Donghua University,China(No.CUSF-DH-D-2022044)。
文摘Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.
基金This research was financially supported by the Ministry of Trade,Industry,and Energy(MOTIE),Korea,under the“Project for Research and Development with Middle Markets Enterprises and DNA(Data,Network,AI)Universities”(AI-based Safety Assessment and Management System for Concrete Structures)(ReferenceNumber P0024559)supervised by theKorea Institute for Advancement of Technology(KIAT).
文摘Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.
基金supported by the Science and Technology Development Fund,Macao SAR(File no.FDCT-0082/2021/A2,0010/2022/AMJ,006/2022/ALC)UM's research fund(File no.MYRG2022-00241-IAPME,MYRGCRG2022-00009-FHS)+2 种基金the research fund from Wuyi University(EF38/IAPME-XGC/2022/WYU)the Natural Science Foundation of China(61935017,62175268)Science,Technology and Innovation Commission of Shenzhen Municipality(Project Nos.JCYJ20220530113015035,JCYJ20210324120204011,and KQTD2015071710313656).
文摘Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.
基金supported by the NationalNatural Science Foundation of China(Grant No.61867004)the Youth Fund of the National Natural Science Foundation of China(Grant No.41801288).
文摘The purpose of software defect prediction is to identify defect-prone code modules to assist software quality assurance teams with the appropriate allocation of resources and labor.In previous software defect prediction studies,transfer learning was effective in solving the problem of inconsistent project data distribution.However,target projects often lack sufficient data,which affects the performance of the transfer learning model.In addition,the presence of uncorrelated features between projects can decrease the prediction accuracy of the transfer learning model.To address these problems,this article propose a software defect prediction method based on stable learning(SDP-SL)that combines code visualization techniques and residual networks.This method first transforms code files into code images using code visualization techniques and then constructs a defect prediction model based on these code images.During the model training process,target project data are not required as prior knowledge.Following the principles of stable learning,this paper dynamically adjusted the weights of source project samples to eliminate dependencies between features,thereby capturing the“invariance mechanism”within the data.This approach explores the genuine relationship between code defect features and labels,thereby enhancing defect prediction performance.To evaluate the performance of SDP-SL,this article conducted comparative experiments on 10 open-source projects in the PROMISE dataset.The experimental results demonstrated that in terms of the F-measure,the proposed SDP-SL method outperformed other within-project defect prediction methods by 2.11%-44.03%.In cross-project defect prediction,the SDP-SL method provided an improvement of 5.89%-25.46% in prediction performance compared to other cross-project defect prediction methods.Therefore,SDP-SL can effectively enhance within-and cross-project defect predictions.
基金supported by the National Natural Science Foundation of China(12002138).
文摘To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different scales of strip surface defects,a strip steel surface defect detection algorithm based on improved Faster R-CNN is proposed.Firstly,the residual convolution module is inserted into the Swin Transformer network module to form the RC-Swin Transformer network module,and the RC-Swin Transformer module is introduced into the backbone network of the traditional Faster R-CNN to enhance the ability of the network to extract the global feature information of the image and adapt to the complex shape of the strip steel surface defect.To improve the attention of the network to defects in the image,a CBAM-BiFPN network module is designed,and then the backbone network is combined with the CBAM-BiFPN network to realize the de-tection and fusion of multi-scale features.The RoI align layer is used instead of the RoI pooling layer to improve the accuracy of defect loca-tion.Finally,Soft NMS is used to achieve non-maximum suppression and remove redundant boxes.In the comparative experiment on the NEU-DET dataset,the improved algorithm improves the mean average precision by 4.2%compared with the Faster R-CNN algorithm,and also improves the average precision by 6.1%and 6.7%for crazing defect and rolled-in scale defect,which are difficult to detect with the Faster R-CNN algorithm.The experiments show that the improvements proposed in the paper effectively improve the detection accuracy of the algorithm and have certain practical value.
基金The San Juan Bautista School of Medicine’s Institutional Review Board approved the study(EMSJBIRB-7-2021).
文摘Background:Given the pervasive issues of obesity and diabetes both in Puerto Rico and the broader United States,there is a compelling need to investigate the intricate interplay among body mass index(BMI),pregesta-tional,and gestational maternal diabetes,and their potential impact on the occurrence of congenital heart defects(CHD)during neonatal development.Methods:Using the comprehensive System of Vigilance and Surveillance of Congenital Defects in Puerto Rico,we conducted a focused analysis on neonates diagnosed with CHD between 2016 and 2020.Our assessment encompassed a range of variables,including maternal age,gestational age,BMI,pregestational diabetes,gestational diabetes,hypertension,history of abortion,and presence of preeclampsia.Results:A cohort of 673 patients was included in our study.The average maternal age was 26 years,within a range of 22 to 32 years.The mean gestational age measured 39 weeks,with a median span of 38 to 39 weeks.Of the 673 patients,274(41%)mothers gave birth to neonates diagnosed with CHD.Within this group,22 cases were linked to pre-gestational diabetes,while 202 were not;20 instances were associated with gestational diabetes,compared to 200 without;and 148 cases exhibited an overweight or obese BMI,whereas 126 displayed a normal BMI.Conclusion:We identified a statistically significant correlation between pre-gestational diabetes mellitus and the occurrence of CHD.However,our analysis did not show a statistically significant association between maternal BMI and the likelihood of CHD.These results may aid in developing effective strategies to prevent and manage CHD in neonates.
基金National Natural Science Foundation of China,No.U20A20403This study was conducted in accordance with the Animal Ethics Committee of the Institute of Antler Science and Product Technology,Changchun Sci-Tech University(AEC No:CKARI202309).
文摘BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown that decellularized extracellular matrix(ECM)derived from autologous,allogenic,or xenogeneic mesenchymal stromal cells(MSCs)can effectively restore osteochondral integrity.AIM To determine whether the decellularized ECM of antler reserve mesenchymal cells(RMCs),a xenogeneic material from antler stem cells,is superior to the currently available treatments for osteochondral defects.METHODS We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70%confluence;50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition.Decellularized sheets of adipocyte-derived MSCs(aMSCs)and antlerogenic periosteal cells(another type of antler stem cells)were used as the controls.Three weeks after ascorbic acid stimulation,the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints.RESULTS The defects were successfully repaired by applying the ECM-sheets.The highest quality of repair was achieved in the RMC-ECM group both in vitro(including cell attachment and proliferation),and in vivo(including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues).Notably,the antler-stem-cell-derived ECM(xenogeneic)performed better than the aMSC-ECM(allogenic),while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells.CONCLUSION Decellularized xenogeneic ECM derived from the antler stem cell,particularly the active form(RMC-ECM),can achieve high quality repair/reconstruction of osteochondral defects,suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship.
基金This study was approved by the Siriraj Institutional Review Board(SIRB),Faculty of Medicine Siriraj Hospital,Mahidol University(COA no.Si 760/2021).The need for consent was waived by the board due to its retrospective nature and as all personal identifying information was obliterated.The study protocol conforms to the ethical guidelines of the 1975 Declaration of Helsinki.
文摘Background:Atrial septal defect(ASD)is a common form of adult congenital heart disease that can lead to long-term adverse outcomes if left untreated.Early closure of ASD has been associated with excellent outcomes and lower complication rates.However,there is limited evidence regarding the prognosis of ASD closure in older adults.This study aims to evaluate the mortality rates in older ASD patients with and without closure.Methods:A retrospective cohort study was conducted on patients aged 40 years or older with ASD between 2001 and 2017.Patients were followed up to assess all-cause mortality.Univariable and multivariable analyses were performed to identify the predictors of mortality.A p-value of<0.05 was considered statistically significant.Results:The cohort consisted of 450 patients(mean age 56.6±10.4 years,77.3%female),with 66%aged between 40 and 60 years,and 34%over 60 years.Within the cohort,299 underwent ASD closure(201 with transcatheter and 98 with surgical closure).During the median follow-up duration of 7.9 years,51 patients died.The unadjusted cumulative 10-year rate of mortality was 3%in patients with ASD closure,and 28%in patients without ASD closure(log-rank p<0.001).Multivariable analysis revealed that age(hazard ratio[HR]1.04,95%confidence interval[CI]1.006–1.06,p=0.01),NYHA class(HR 2.75,95%CI 1.63–4.62,p<0.001),blood urea nitrogen(BUN)(HR 1.07,95%CI 1.03–1.12,p<0.001),right ventricular systolic pressure(RVSP)(HR 1.07,95%CI 1.003–1.04,p=0.01),and lack of ASD closure(HR 15.12,95%CI 5.63–40.59,p<0.001)were independently associated with mortality.Conclusion:ASD closure demonstrated favorable outcomes in older patients.Age,NYHA class,BUN,RVSP,and lack of ASD closure were identified as independent factors linked to mortality in this population.
基金financial grants from DST,India,through the projects DST/TSG/PT/2009/23,DST/TMD/ICMAP/2K20/03,and DST/CRG/2019/002164,Deity,India,no.5(9)/2012-NANO(Vol.II)the Max-Planck-Gesellschaft IGSTC/MPG/PG(PKI)/2011A/48 and MHRD,India,through the SPARC project SPARC/2018-2019/P1097/SLPMRF(Prime Minister's Research Fellowship),Ministry of Education,Government of India for providing funds to carry out this research.
文摘The rapid advancement of halide-based hybrid perovskite materials has garnered significant research attention,particularly in the domain of photovoltaic technology.Owing to their exceptional optoelec-tronic properties,they demonstrated power conversion efficiency(PcE)of over 25%in single junction solar cells.Despite the notable progress in PCE over the past decade,the inherent high defect density pre-senting in perovskite materials gives rise to several loss mechanisms and associated ion migration in per-ovskite solar cells(PsCs)during operational conditions.These factors collectively contribute to a significant stability challenge in PsCs,placing their longevity far behind for commercialization.While numerous reports have explored defects,ion migration,and their impacts on device performance,a com-prehensive correlation between the types of defects and the degradation kinetics of perovskite materials and PsCs has been lacking.In this context,this review aims to provide a comprehensive overview of the origins of defects and ion migration,emphasizing their correlation with the degradation kinetics of per-ovskite materials and PsCs,leveraging reliable characterization techniques.Furthermore,these charac-terization techniques are intended to comprehend loss mechanisms by different passivation approaches to enhance the durability and PCE of PSCs.
基金supported by the National Natural Science Foundation of China(Nos.51673199,51972301,51677176)the Youth Innovation Promotion Association of CAS(2015148,Y201940)+2 种基金the Youth Innovation Foundation of DICP(ZZBS201615,ZZBS201708)the Dalian Outstanding Young Scientific Talent(2018RJ03)the National Key Research and Development Project(2019YFA0705600)。
文摘Niobium pentoxide(Nb_(2)O_(5))is deemed one of the promising anode materials for lithium-ion batteries(LIBs)for its outstanding intrinsic fast Li-(de)intercalation kinetics.The specific capacity,however,is still limited,because the(de)intercalation of excessive Li-ions brings the undesired stress to damage Nb_(2)O_(5) crystals.To increase the capacity of Nb_(2)O_(5) and alleviate the lattice distortion caused by stress,numerous homogeneous H-and M-phases junction interfaces were proposed to produce coercive stress within theNb_(2)O_(5)crystals.Such interfaces bring about rich oxygen vacancies with structural shrinkage tendency,which pre-generate coercive stress to resist the expansion stress caused by excessive Li-ions intercalation.Therefore,the synthesized Nb_(2)O_(5) achieves the highest lithium storage capacity of 315 mA h g−1 to date,and exhibits high-rate performance(118 mA h g^(-1) at 20 C)as well as excellent cycling stability(138 mA h g^(-1) at 10 C after 600 cycles).
文摘Minimally invasive approaches for cardiac surgery in children have been lagging in comparison to the adult world.A wide range of the most common congenital heart defects in infants and children can be repaired suc-cessfully through a variety of non-sternotomy incisions.This has been shown to be associated with superior cos-metic results,shorter hospital stays,and rapid return to full activity compared to sternotomy.These approaches have been around for decades,but they have not been widely adopted for a variety of reasons.Right axillary thor-acotomy is one of these approaches that we believe should be the new standard for the repair of a wide variety of heart defects in children and will be the focus of our current review.