A Monte Carlo simulation based on the classical binary collision approximation is performed to investigate the interaction of W2 ions with the carbon target. The incident H2^+ ion is characterized by its translationa...A Monte Carlo simulation based on the classical binary collision approximation is performed to investigate the interaction of W2 ions with the carbon target. The incident H2^+ ion is characterized by its translational energy, eigenenergy and population of the vibrational state, and orientation of the ion with respect to the target surface. It is shown that experimentally determined energy resolved mass spectrum of H+ can be nicely reproduced with the help of the proposed model. These simulations predict that translational to vibrational (T → V) energy transfer efficiency increases nonlinearly with translational energy of the incident ion. T → V energy transfer efficiency along with the initial vibrational energy of the incident H+ ion found to play an important role in dissociation. Our simulations also show that the fraction of absorbed, reflected, and dissociated ions depends on the translational energy. The average vibrational energy of reflected H+ increases with its initial translational energy. Moreover, average number of collisions required for dissociation varies inversely with the initial translational energy of the H2^+.展开更多
The effects of surface-induced evaporative cooling on an atom chip are investigated. The evolutions of temperature, number and phase-space density of the atom cloud are measured when the atom cloud is brought close to...The effects of surface-induced evaporative cooling on an atom chip are investigated. The evolutions of temperature, number and phase-space density of the atom cloud are measured when the atom cloud is brought close to the surface. Rapid decrease of the temperature and number of the atoms is found when the atom-surface distance is 〈 100 ttm. A gain of about a factor of five on the phase-space density is obtained. It is found that the efficiency of the surface-induced evaporative cooling depends on the atom-surface distance and the shape of the evaporative trap. When the atoms are moved very close to the surface, severe heating is observed, which dominates when the holding time is 〉 8 ms. It is important that the surface-induced evaporative cooling offers novel possibilities for the realization of a continuous condensation, where a spatially varying evaporative cooling is required.展开更多
Piezoelectric nanowires are promising building blocks in various micro-electromechanical systems. Using firstprinciples calculations, we systematically investigate the influence of surface and volume changes on piezoe...Piezoelectric nanowires are promising building blocks in various micro-electromechanical systems. Using firstprinciples calculations, we systematically investigate the influence of surface and volume changes on piezoelectric coefficients in [001]-oriented ZnO nanowires and hollow nanowires. We find that the increased non-axial ion displacements under strain near the {100} surface cause a notable enhancement in piezoelectric coefficients for these nanowires. Furthermore, by introducing the obtained surface modifications, we break through the limitation of simulation size and obtain the piezoelectric coefficients at the experimental size. Our findings are of importance to expand simulations and guide experimental explorations.展开更多
In this work,we study the interaction between two colloidal particles in a liquid crystal that is in the isotropic phase.The interaction is caused by surface-induced polarization of the liquid crystal molecules in the...In this work,we study the interaction between two colloidal particles in a liquid crystal that is in the isotropic phase.The interaction is caused by surface-induced polarization of the liquid crystal molecules in the vicinity of the particles.We find that the interaction is short-ranged in both 2D and 3D geometry.Under symmetric homeotropic anchoring conditions,the interaction is repulsive.While under anti-symmetric homeotropic anchoring conditions,the interaction is repulsive at short distances but attractive at intermediate distances.The particle size has a strong impact on the effective interaction force.展开更多
Granular porous sorbents were normally used for heavy metals removal from water.To search for the new commercial sorbent and treatment strategy,an organic acrylic amine fiber(AAF)and phosphorus loading inorganic-organ...Granular porous sorbents were normally used for heavy metals removal from water.To search for the new commercial sorbent and treatment strategy,an organic acrylic amine fiber(AAF)and phosphorus loading inorganic-organic AAF(P-AAF)were prepared and used for lead(Pb)removal from water.A new strategy of inorganic-organic coupling technology was proposed for Pb removal,based on the hypothesis of surface-induced precipitation mechanism.The AAF showed a Pb adsorption capacity of 417 mg/g from the Langmuir fitting,while the column filtration technology was further applied to measure the adsorption edge and applications.Effects of different initial Pb concentrations,hydraulic retention time,and co-existing P were considered in the filtration experiments.The presence of 0.8 mg/L P in water significantly improved the Pb breakthrough point from 15,000 to 41,000 bed volumes of water spiked with 85μg/L Pb,while the P-AAF fixed bed showed better removal of Pb than AAF SEM/EDX and XRD spectra were employed for determining the surface functional groups and the formation of surface-induced precipitation of pyromorphite(Pb_5(PO_4)_3 OH)on AAF.This study verified the application of AAF sorbent for Pb removal and the enhanced effect of coating P on AAF,thus improved our fundamental understanding and application of the surface chemistry process of Pb with P.展开更多
In modern chemical engineering processes, the involvement of solid/fluid interface is the most important component of process intensification techniques, such as confined membrane separation and catalysis. In the revi...In modern chemical engineering processes, the involvement of solid/fluid interface is the most important component of process intensification techniques, such as confined membrane separation and catalysis. In the review, we summarized the research progress of the latest theoretical and experimental works to elucidate the contribution of interface to the fluid properties and structures at nano-and micro-scale. We mainly focused on water, alcohol aqueous solution, and ionic liquids, because they are classical systems in interfacial science and/or widely involved in the industrialization process. Surface-induced fluids were observed in all reviewed systems and played a critical role in physicochemical properties and structures of outside fluid. It can even be regarded as a new interface, when the adsorption layer has a strong interaction with the solid surface. Finally, we proposed a perspective on scientific challenges in the modern chemical engineering processes and outlined future prospects.展开更多
The surface-induced effect on the morphologies of lamella-forming diblock copolymers in nanorod arrays is studied by using the self-consistent field theory. In the simulation study, a rich variety of novel morphologie...The surface-induced effect on the morphologies of lamella-forming diblock copolymers in nanorod arrays is studied by using the self-consistent field theory. In the simulation study, a rich variety of novel morphologies are observed by variations in the strength of the surface field for the diblock copolymers. Different surface-field-induced effects are examined for the diblock copolymers in the arrays with distinct preferential surfaces. It is observed that the majority-block preferential surfaces have more obvious induced effects than those of minority-block preferential surfaces. The strong surface fields exhibit different behaviours from those observed in the weak surface fields, by which the morphologies possess cylindrical symmetries. Results from this research deepen the knowledge of surface-induced effects in a confinement system, which may aid the fabrication of polymer-based na^omaterials.展开更多
The phase behaviors of symmetric diblock copolymer thin films confined between two hard, parallel and diversified patterned surfaces are investigated by three-dimensional dissipative particle dynamics (DPD) simulation...The phase behaviors of symmetric diblock copolymer thin films confined between two hard, parallel and diversified patterned surfaces are investigated by three-dimensional dissipative particle dynamics (DPD) simulations. The induction of diversified patterned surfaces on phase separation of symmetric diblock copolymer films in snapshots, density profiles and concentration diagrams of the simulated systems are presented. The phase separations can be controlled by the patterned surfaces. In the meantime, the mean-square end-to-end distance of the confined polymer chains < R(2)> is also discussed. Surface-induced phase separation for diblock copolymers can help us to create novel and controlled nanostructured materials.展开更多
Long-range ordered nanostructures are prepared in the poly(styrene)-block-poly(e-caprolactone) diblock copolymer thin films using micromolding. We evaluated the change in crystallinity based on grazing-incidence X...Long-range ordered nanostructures are prepared in the poly(styrene)-block-poly(e-caprolactone) diblock copolymer thin films using micromolding. We evaluated the change in crystallinity based on grazing-incidence X-ray diffraction and proved that the crystallinity increased with the decrease of the mold size. This means that ordered nanostructures with atomic length scale order can be adjusted by tuning the mesoscale confinement. The inherent mechanism was the cooperation of geometric confinement, microphase structure and surface-induced ordering of PS-b-PCL in the melt, which paved the way for the subsequent crystal growth. These findings establish a route to promote the cost-effective nanofabrication by combining the mature microfabrication technique with the emerging directed self-assembly of block copolymers.展开更多
文摘A Monte Carlo simulation based on the classical binary collision approximation is performed to investigate the interaction of W2 ions with the carbon target. The incident H2^+ ion is characterized by its translational energy, eigenenergy and population of the vibrational state, and orientation of the ion with respect to the target surface. It is shown that experimentally determined energy resolved mass spectrum of H+ can be nicely reproduced with the help of the proposed model. These simulations predict that translational to vibrational (T → V) energy transfer efficiency increases nonlinearly with translational energy of the incident ion. T → V energy transfer efficiency along with the initial vibrational energy of the incident H+ ion found to play an important role in dissociation. Our simulations also show that the fraction of absorbed, reflected, and dissociated ions depends on the translational energy. The average vibrational energy of reflected H+ increases with its initial translational energy. Moreover, average number of collisions required for dissociation varies inversely with the initial translational energy of the H2^+.
基金Project supported by the State Key Basic Research Program (Grant No 2006CB921202)the National Natural Science Foundation of China (Grant No 10334050)
文摘The effects of surface-induced evaporative cooling on an atom chip are investigated. The evolutions of temperature, number and phase-space density of the atom cloud are measured when the atom cloud is brought close to the surface. Rapid decrease of the temperature and number of the atoms is found when the atom-surface distance is 〈 100 ttm. A gain of about a factor of five on the phase-space density is obtained. It is found that the efficiency of the surface-induced evaporative cooling depends on the atom-surface distance and the shape of the evaporative trap. When the atoms are moved very close to the surface, severe heating is observed, which dominates when the holding time is 〉 8 ms. It is important that the surface-induced evaporative cooling offers novel possibilities for the realization of a continuous condensation, where a spatially varying evaporative cooling is required.
文摘Piezoelectric nanowires are promising building blocks in various micro-electromechanical systems. Using firstprinciples calculations, we systematically investigate the influence of surface and volume changes on piezoelectric coefficients in [001]-oriented ZnO nanowires and hollow nanowires. We find that the increased non-axial ion displacements under strain near the {100} surface cause a notable enhancement in piezoelectric coefficients for these nanowires. Furthermore, by introducing the obtained surface modifications, we break through the limitation of simulation size and obtain the piezoelectric coefficients at the experimental size. Our findings are of importance to expand simulations and guide experimental explorations.
基金support from the National Natural Science Foundation of China under Grant No.12004317Fundamental Research Funds for Central Universities of China under Grant No.20720200072111 project No.B16029.
文摘In this work,we study the interaction between two colloidal particles in a liquid crystal that is in the isotropic phase.The interaction is caused by surface-induced polarization of the liquid crystal molecules in the vicinity of the particles.We find that the interaction is short-ranged in both 2D and 3D geometry.Under symmetric homeotropic anchoring conditions,the interaction is repulsive.While under anti-symmetric homeotropic anchoring conditions,the interaction is repulsive at short distances but attractive at intermediate distances.The particle size has a strong impact on the effective interaction force.
基金supported by the Fundamental Research Funds for Central Public Welfare Scientific Research Institutes of China(No.2019-YSKY-009)the Major Science and Technology Projects for Water Pollution Control and Treatment(No.2017ZX07004)。
文摘Granular porous sorbents were normally used for heavy metals removal from water.To search for the new commercial sorbent and treatment strategy,an organic acrylic amine fiber(AAF)and phosphorus loading inorganic-organic AAF(P-AAF)were prepared and used for lead(Pb)removal from water.A new strategy of inorganic-organic coupling technology was proposed for Pb removal,based on the hypothesis of surface-induced precipitation mechanism.The AAF showed a Pb adsorption capacity of 417 mg/g from the Langmuir fitting,while the column filtration technology was further applied to measure the adsorption edge and applications.Effects of different initial Pb concentrations,hydraulic retention time,and co-existing P were considered in the filtration experiments.The presence of 0.8 mg/L P in water significantly improved the Pb breakthrough point from 15,000 to 41,000 bed volumes of water spiked with 85μg/L Pb,while the P-AAF fixed bed showed better removal of Pb than AAF SEM/EDX and XRD spectra were employed for determining the surface functional groups and the formation of surface-induced precipitation of pyromorphite(Pb_5(PO_4)_3 OH)on AAF.This study verified the application of AAF sorbent for Pb removal and the enhanced effect of coating P on AAF,thus improved our fundamental understanding and application of the surface chemistry process of Pb with P.
基金supported by the National Natural Science Foundation of China [21878144, 21729601, 21838004]the Foundation for Innovative Research Groups of the National Natural Science Foundation of China [21921006]+3 种基金Project of Jiangsu Natural Science Foundation of China [BK20171464]Project of Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the Kempe Foundation in Swedengrant of Ministry of Research and Innovation, CNCS-UEFISCDI, Romania, project number PN-III-P4-ID-PCCF-2016-0050, within PNCDI III and the Swedish Science Council (VR)。
文摘In modern chemical engineering processes, the involvement of solid/fluid interface is the most important component of process intensification techniques, such as confined membrane separation and catalysis. In the review, we summarized the research progress of the latest theoretical and experimental works to elucidate the contribution of interface to the fluid properties and structures at nano-and micro-scale. We mainly focused on water, alcohol aqueous solution, and ionic liquids, because they are classical systems in interfacial science and/or widely involved in the industrialization process. Surface-induced fluids were observed in all reviewed systems and played a critical role in physicochemical properties and structures of outside fluid. It can even be regarded as a new interface, when the adsorption layer has a strong interaction with the solid surface. Finally, we proposed a perspective on scientific challenges in the modern chemical engineering processes and outlined future prospects.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.20374050,20934004,21074096,50773072,and 90403022)the Outstanding Youth Fund of China (Grant No.20525416)+3 种基金the National Basic Research Program of China(Grant No.2005CB623800)Program for New Century Excellent Talents in University (Grant No.NCET-05-0538)the Natural Science Foundation of Zhejiang Province (Grant Nos.Y4090174 and Y6100033)the Science Technology Development Plan of Wenzhou City,China (Grant No.H20080041)
文摘The surface-induced effect on the morphologies of lamella-forming diblock copolymers in nanorod arrays is studied by using the self-consistent field theory. In the simulation study, a rich variety of novel morphologies are observed by variations in the strength of the surface field for the diblock copolymers. Different surface-field-induced effects are examined for the diblock copolymers in the arrays with distinct preferential surfaces. It is observed that the majority-block preferential surfaces have more obvious induced effects than those of minority-block preferential surfaces. The strong surface fields exhibit different behaviours from those observed in the weak surface fields, by which the morphologies possess cylindrical symmetries. Results from this research deepen the knowledge of surface-induced effects in a confinement system, which may aid the fabrication of polymer-based na^omaterials.
基金supported by the National Natural Science Foundation of China(Nos.20574052,20774066)the Program for New Century Excellent Talents in Universities(No.NCET-05-0538).
文摘The phase behaviors of symmetric diblock copolymer thin films confined between two hard, parallel and diversified patterned surfaces are investigated by three-dimensional dissipative particle dynamics (DPD) simulations. The induction of diversified patterned surfaces on phase separation of symmetric diblock copolymer films in snapshots, density profiles and concentration diagrams of the simulated systems are presented. The phase separations can be controlled by the patterned surfaces. In the meantime, the mean-square end-to-end distance of the confined polymer chains < R(2)> is also discussed. Surface-induced phase separation for diblock copolymers can help us to create novel and controlled nanostructured materials.
基金financially supported by the National Natural Science Foundation of China(Nos.21274148 and 21074135)The experimental setup at the Nanofocus Endstation of MiNaXS was funded by the German Federal Ministry of Education and Research(projects BMBF 05KS7FK1 and 05K10FK3)
文摘Long-range ordered nanostructures are prepared in the poly(styrene)-block-poly(e-caprolactone) diblock copolymer thin films using micromolding. We evaluated the change in crystallinity based on grazing-incidence X-ray diffraction and proved that the crystallinity increased with the decrease of the mold size. This means that ordered nanostructures with atomic length scale order can be adjusted by tuning the mesoscale confinement. The inherent mechanism was the cooperation of geometric confinement, microphase structure and surface-induced ordering of PS-b-PCL in the melt, which paved the way for the subsequent crystal growth. These findings establish a route to promote the cost-effective nanofabrication by combining the mature microfabrication technique with the emerging directed self-assembly of block copolymers.