Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-the...Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-thermal coupling method is proposed.The magnetic-thermal coupling mechanism is analyzed.The thermal network model and finite element model are built by this method,respectively.The effects of power frequency on iron losses and temperature fields are analyzed by the magnetic-thermal coupling finite element model under the condition of rated load,and the relationship between the load and temperature field is researched under the condition of the synchronous speed.In addition,the equivalent thermal network model is used to verify the magnetic-thermal coupling method.Then the temperatures of various nodes are obtained.The results show that there are advantages in both computational efficiency and accuracy for the proposed coupling method,which can be applied to other permanent magnet motors with complex structures.展开更多
In addition to the characteristics of a conventional motor, a novel direct-drive double-stator permanent-magnet brushless motor proposed can operate in the state of either a generator or a motor as appropriate. Throug...In addition to the characteristics of a conventional motor, a novel direct-drive double-stator permanent-magnet brushless motor proposed can operate in the state of either a generator or a motor as appropriate. Through numerical calculation and analysis, the output torque of double-stator permanent-magnet brushless motor of the same volume as the traditional machine is discussed, and the reduction of torque ripple by using the structure features of this motor is investigated. The results indicate that lower torque ripple under the condition of ideal effective torque can be obtained by the rational design of motor. The prototype motors tested show that this kind of motor structure has a higher power density.展开更多
A new-style direct drive motor with double-stator structure is proposed. The structure and principle of the permanent-magnet (PM) brushless motor are discussed. On the basis of numerical calculation, the cogging torqu...A new-style direct drive motor with double-stator structure is proposed. The structure and principle of the permanent-magnet (PM) brushless motor are discussed. On the basis of numerical calculation, the cogging torque waveforms of the prototype motor when staggering two stators are analyzed. The method that can reduce torque ripple making use of the structure features of this motor is investigated. The results of numerical calculation and experiment indicate that designing motor with this kind of structure is a good scheme for increasing the power density.展开更多
Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system,however it is restricted for large application because of low and complex process.A nov...Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system,however it is restricted for large application because of low and complex process.A novel type of cylindrical,non-overlapping,transverse-flux,and permanent-magnet linear motor(TFPLM) is investigated,furthermore,a high power factor and less process complexity structure research is developed.The impact of magnetic leakage factor on power factor is discussed,by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM,an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor.The relation between power factor and structure parameter is investigated,and a structure parameter optimization method is proposed taking power factor maximum as a goal.At last,the test bench is founded,starting experimental and generating experimental are performed,and a good agreement of simulation and experimental is achieved.The power factor is improved and the process complexity is decreased.This research provides the instruction to design high-power factor permanent-magnet linear generator.展开更多
This paper deals with the design of high power – low dimensions axial-flux permanent-magnet motor intended for trac-tion application. First, two motor configurations are analytically designed and compared using finit...This paper deals with the design of high power – low dimensions axial-flux permanent-magnet motor intended for trac-tion application. First, two motor configurations are analytically designed and compared using finite element calcula-tion. Then, the configuration yielding the best performances is integrated and modelled with the whole traction chain under MATLAB/SIMULINK environment in order to demonstrate the motor operation on a large speed band.展开更多
A novel dual-side primary permanent-magnet vernier linear(DS-PPMVL)motors is proposed.The novelty of the proposed motors is the design of asymmetric consequent poles on the mover,which can effectively enforce the flux...A novel dual-side primary permanent-magnet vernier linear(DS-PPMVL)motors is proposed.The novelty of the proposed motors is the design of asymmetric consequent poles on the mover,which can effectively enforce the flux-modulation effect and improve the thrust force performance.First,the topologies and operation principle are introduced.Subsequently,the structure relationships between the existing and proposed motors are discussed.Then,a unified analytical model is built.Accordingly,the magnetic field generated by the consequent pole is calculated.Meanwhile,the performance improvement mechanism with the asymmetric consequent pole is analyzed.To improve the efficiency of motor optimization,multi-objective optimization method is adopted to obtain the global optimal solution combination of structure parameters.The proposed motors exhibit higher thrust force,higher force density,less PM consumption,and better overload performance than the existing DS-PPMVL motor.Finally,experiments are conducted based on the existing prototype to verify the accuracy of the design and analysis.展开更多
The influence of bread-loaf shaped magnet poles under parallel magnetization on the cogging torque of surface-mounted permanent magnet(SPM)motors is studied.For the SPM motors having magnetic poles with eccentricity a...The influence of bread-loaf shaped magnet poles under parallel magnetization on the cogging torque of surface-mounted permanent magnet(SPM)motors is studied.For the SPM motors having magnetic poles with eccentricity and sine harmonic compensation,the electromagnetic performances of integer and fractional slot motors are compared.It is found that the cogging torque and torque ripple of the integer and fractional slot motors can be reduced with the same eccentric magnet pole.The cogging torque and torque ripple of a fractional slot motor can be decreased by sine harmonic compensation,however,the same sine harmonic compensation has a small influence in integer slot motors.By varying the magnetic poles,the contribution of the field harmonics(k=(2n+1)p),which are a direct result of magnet magnetization,to the cogging torque also changes.The electromagnetic performance of a 3 kW prototype is tested,and it is found that the experimental results validate the theoretical investigation.展开更多
The surface-mounted and interior permanent magnet synchronous motor(SIPMSM)has the characteristics of multiple variables,strong coupling and nonlinearity.In order to improve the performance of SIPMSM,this paper presen...The surface-mounted and interior permanent magnet synchronous motor(SIPMSM)has the characteristics of multiple variables,strong coupling and nonlinearity.In order to improve the performance of SIPMSM,this paper presents a multi-objective optimal design process using Taguchi and response surface methodology(RSM).The peak value of cogging torque(PVCT),ratio value of average torque and permanent magnet weight(RTW),torque ripple and back-EMF total harmonics distortion(ETHD)are selected as optimization goals.The experiment matrix is established by Taguchi method,and analyzed the tendency and proportion of the effect of the optimization parameters on SIPMSM performance.The rules of choosing multi-objective optimization parameters are obtained.The least-squares method is used to establish the optimal objective function,and RSM is used to obtain the resolutions of the optimization objective function.Comparing the initial performance with optimized performance verifies the effectiveness of the proposed method.展开更多
Recent advancements in power electronics technology evolves inverter fed electric motors.Speed signals and rotor position are essential for controlling an electric motor accurately.In this paper,the sensorless speed c...Recent advancements in power electronics technology evolves inverter fed electric motors.Speed signals and rotor position are essential for controlling an electric motor accurately.In this paper,the sensorless speed control of surface-mounted permanent magnet synchronous motor(SPMSM)has been attempted.SPMSM wants a digital inverter for its precise working.Hence,this study incor-poratesfifteen level inverter to the SPMSM.A sliding mode observer(SMO)based sensorless speed control scheme is projected to determine rotor spot and speed of the multilevel inverter(MLI)fed SPMSM.MLI has been operated using a multi carrier pulse width modulation(MCPWM)strategy for generation offif-teen level voltages.The simulation works are executed with MATLAB/SIMU-LINK software.The steadiness and the heftiness of the projected model have been investigated under no loaded and loaded situations of SPMSM.Furthermore,the projected method can be adapted for electric vehicles.展开更多
Permanent magnet(PM)motors are widely used in our daily lives.Taking a surface-mounted PM motor as an example,a magnetic circuit model considering the peripheral magnetic flux leakage is established.Maxwell software i...Permanent magnet(PM)motors are widely used in our daily lives.Taking a surface-mounted PM motor as an example,a magnetic circuit model considering the peripheral magnetic flux leakage is established.Maxwell software is used to simulate different loads and thicknesses and the materials of the shielding layers.The magnetic flux leakage around the motor has a sinusoidal distribution in the space.The value of the magnetic flux leakage is inversely proportional to the power of P+1 from the surface of the core.The thicker the shielding layer,the smaller the magnetic leakage.The greater the relative permeability of the shielding layer,the better the shielding effect.The results provide ideas and recommendations for the magnetic flux leakage analysis and the design of non-magnetic or low magnetic motors.展开更多
Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor fault...Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.展开更多
The nonlinear dynamics of permanent-magnet synchronous motor(PMSM) with v/f control signals is investigated intensively.First,the equilibria and steady-state characteristics of the system are formulated by analytical ...The nonlinear dynamics of permanent-magnet synchronous motor(PMSM) with v/f control signals is investigated intensively.First,the equilibria and steady-state characteristics of the system are formulated by analytical analysis.Then,some of its basic dynamical properties,such as characteristic eigenvalues,Lyapunov exponents and phase trajectories are studied by varying the values of system parameters.It is found that when the values of the system parameters are smaller,the PMSM operates in stable domains,no matter what the values of control gains are.With the values of parameters increasing,the unstability appears and PMSM falls into chaotic operation.Furthermore,the complex dynamic behaviors are verified by means of simulation.展开更多
A primary permanent-magnet linear motor (PPMLM) has a robust secondary structure and high force density and is appropriate for direct-drive mechanical press. The structure of a four-side PPMLM drive press is presented...A primary permanent-magnet linear motor (PPMLM) has a robust secondary structure and high force density and is appropriate for direct-drive mechanical press. The structure of a four-side PPMLM drive press is presented based on our previous research. The entire press control system is constructed to realize various flexible forming processes. The control system scheme is determined in accordance with the mathematical model of PPMLM, and active disturbance rejection control is implemented in the servo controller. Field-circuit coupling simulation is applied to estimate the system’s performance. Then, a press prototype with 6 kN nominal force is fabricated, and the hardware platform of the control system is constructed for experimental study. Punch strokes with 0.06 m displacement are implemented at trapezoidal speeds of 0.1 and 0.2 m/s;the dynamic position tracking errors are less than 0.45 and 0.82 mm, respectively. Afterward, continuous reciprocating strokes are performed, and the positioning errors at the bottom dead center are less than 0.015 mm. Complex pulse trajectories are also achieved. The proposed PPMLM drive press exhibits a fast dynamic response and favorable tracking precision and is suitable for various forming processes.展开更多
This paper presents a comparative performance analysis of a new five-phase fault-tolerant flux-switching permanent-magnet(FT-FSPM)motor for high-reliability applications under the two most popular control schemes,name...This paper presents a comparative performance analysis of a new five-phase fault-tolerant flux-switching permanent-magnet(FT-FSPM)motor for high-reliability applications under the two most popular control schemes,namely,field-oriented control(FOC)and direct torque control(DTC)based on stator-flux orientation.Firstly,the new motor topology and structural characteristics are briefly presented.Secondly,the d-and q-axis for the FT-FSPM motor are defined,which is crucial to the mathematical model and control scheme,and the mathematical models are derived.Then,two control schemes,i.e.,FOC and DTC,and the main system are proposed.The operational principles of the two control schemes are presented,and space vector pulse width modulation(SVPWM)based on four neighboring vectors is adopted to reduce current harmonics and torque ripples.Finally,the simulated and experimental results are given,and performance analysis of the two control schemes are compared and discussed.The results reveal that FOC scheme has the sinusoidal phase current and low torque ripples,while the DTC scheme has fast dynamic response,verifying the effectiveness of the two proposed control schemes.This paper is a primary investigation for more possible improvements in the control schemes of the five-phase FS-FTPM motor.展开更多
In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variation...In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variations and load disturbances. To handle the intrinsic chattering of SMC,an adaptive law and an extended state observer( ESO) are utilized in the speed SMC controller design. The adaptive law is used to estimate the internal parameter variations and compensate for the disturbances caused by model uncertainty. In addition,the ESO is introduced to estimate the load disturbance in real time. The estimated value is used as a feed-forward compensator for the speed adaptive sliding-mode controller to further increase the system's ability to resist disturbances. The proposed composite method,which combines adaptive SMC( ASMC) and ESO,is compared with PI control and ASMC. Both the simulation and experimental results demonstrate that the proposed method alleviates the chattering of SMC systems and improves the dynamic response and robustness of the speed control system against disturbances.展开更多
A robustness-tracking control scheme based on combining H_∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking ...A robustness-tracking control scheme based on combining H_∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking and robustness of the linear servo system. The sliding mode tracking controller is designed to ensure the system has a fast tracking characteristic to the command, and the H_∞ robustness controller suppresses the disturbances well within the close loop(including the load and the end effect force of linear motor etc.) and effectively minimizes the chattering of sliding mode control which influences the steady state performance of the system. Simulation results show that this control scheme enhances the track-command-ability and the robustness of the linear servo system, and in addition, it has a strong robustness to parameter variations and resistance disturbances.展开更多
In this paper,a novel bipolar transverse flux motor with stator permanent magnet excitation is proposed based on the summary and analysis of the transverse flux motor and stator permanent magnet motor research achieve...In this paper,a novel bipolar transverse flux motor with stator permanent magnet excitation is proposed based on the summary and analysis of the transverse flux motor and stator permanent magnet motor research achievements in recent years.It has been shown that the motor realizes the bipolar winding flux through the detailed analysis.The motor can be used as an inwheel motor in electric vehicles because of its external rotor and permanent magnets mounted on the stator radial surface.Secondly the basic structure and working principle of the motor are introduced.Then the relationship between the motor power and its dimensions is deduced.Thirdly the 3 dimensional finite element method(3D FEM)is used to analyze the static and transient characteristics,including the no-load magnetic field distribution and winding back EMF.Finally a three-phase 600W prototype has been made and the experimental analysis is carried out.展开更多
A hybrid power transmission system (HPTS) is a promising way to save energy in a hydraulic excavator and the electric machine is one of the key components of the system. In this paper, a design process for permanent...A hybrid power transmission system (HPTS) is a promising way to save energy in a hydraulic excavator and the electric machine is one of the key components of the system. In this paper, a design process for permanent-magnet synchronous machines (PMSMs) in a hybrid hydraulic excavator (HHE) is presented based on the analysis of the working conditions and requirements of an HHE. A parameterized design approach, which combines the analytical model and the 2D finite element method (FEM), is applied to the electric machine to improve the design efficiency and accuracy. The analytical model is employed to optimize the electric machine efficiency and obtain the statordimension and flux density distribution. The rotor is designed with the FEM to satisfy the flux requirements obtained in stator design. The rotor configuration of the PMSM employs an interior magnet structure, thus resulting in some inverse saliency, which allows for much higher values in magnetic flux density. To reduce the rotor leakage, a disconnected type silicon steel block structure is adopted. To improve the air gap flux density distribution, the trapezoid permanent magnet (PM) and centrifugal rotor structure are applied to PMSM. Demagnetization and armature reactions are also taken into consideration and calculated by the FEM. A prototype of the newly designed electric machine has been fabri- cated and tested on the experimental platform. The analytical design results are validated by measurements.展开更多
In this paper, two different designs, with dummy slots and bread-loaf magnets techniques, are presented to reduce the electromagnetic vibration in integral-slot surface-mounted permanent-magnet(SPM) machines. Firstly,...In this paper, two different designs, with dummy slots and bread-loaf magnets techniques, are presented to reduce the electromagnetic vibration in integral-slot surface-mounted permanent-magnet(SPM) machines. Firstly, the stator slotting effect on the magnetic field modulation and radial force modulation is investigated. It reveals the amplitude of the modulated magnetic field and modulated radial force is greatly affected by the slot opening effect, while the spatial order is closely associated with the slot numbers. Subsequently, the dummy slots and bread-loaf magnets design are developed for a 36-slot/12-pole integral-slot SPM machine to reduce the electromagnetic vibration. Finally, two SPM machines, with conventional and bread-loaf magnets,are manufactured. Experimental tests are carried out to validate the theoretical analyses.展开更多
This paper focuses on modeling and perfor- mance predetermination of a photovoltaic (PV) system with a boost converter fed permanent magnet direct current (PMDC) motor-centrifugal pump load, taking the con- verter...This paper focuses on modeling and perfor- mance predetermination of a photovoltaic (PV) system with a boost converter fed permanent magnet direct current (PMDC) motor-centrifugal pump load, taking the con- verter losses into account. Sizing is done based on the maximum power generated by the PV array at the average irradiation. Hence optimum sizing of the PV array for the given irradiation at the geographical location of interest is obtained using the predetermined values. The analysis presented here involves systems employing maximum power point tracking (MPPT) as they are more efficient than directly coupled systems. However, the voltage and power of the motor might rise above rated values for irradiations greater than the average when employing MPPT, hence a control scheme has been proposed to protect the PMDC motor from being damaged during these conditions. This control scheme appropriately chooses the optimum operating point of the system, ensuring long-term sustained operation. The numerical simulation of the system is performed in Matlab/Simulink and is validated with experimental results obtained from a 180 V, 0.5 hp PMDC motor coupled to a centrifugal pump. The operation of the system with the proposed control scheme is verified by varying the irradiation levels and the relevant results are presented.展开更多
基金This work was supported by Natural Science Foundation of China(Item number:51777060,U1361109)Natural Science Foundation of Henan province(Item number:162300410117)the he innovative research team plan of Henan Polytechnic University(Item number:T2015-2).
文摘Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-thermal coupling method is proposed.The magnetic-thermal coupling mechanism is analyzed.The thermal network model and finite element model are built by this method,respectively.The effects of power frequency on iron losses and temperature fields are analyzed by the magnetic-thermal coupling finite element model under the condition of rated load,and the relationship between the load and temperature field is researched under the condition of the synchronous speed.In addition,the equivalent thermal network model is used to verify the magnetic-thermal coupling method.Then the temperatures of various nodes are obtained.The results show that there are advantages in both computational efficiency and accuracy for the proposed coupling method,which can be applied to other permanent magnet motors with complex structures.
文摘In addition to the characteristics of a conventional motor, a novel direct-drive double-stator permanent-magnet brushless motor proposed can operate in the state of either a generator or a motor as appropriate. Through numerical calculation and analysis, the output torque of double-stator permanent-magnet brushless motor of the same volume as the traditional machine is discussed, and the reduction of torque ripple by using the structure features of this motor is investigated. The results indicate that lower torque ripple under the condition of ideal effective torque can be obtained by the rational design of motor. The prototype motors tested show that this kind of motor structure has a higher power density.
文摘A new-style direct drive motor with double-stator structure is proposed. The structure and principle of the permanent-magnet (PM) brushless motor are discussed. On the basis of numerical calculation, the cogging torque waveforms of the prototype motor when staggering two stators are analyzed. The method that can reduce torque ripple making use of the structure features of this motor is investigated. The results of numerical calculation and experiment indicate that designing motor with this kind of structure is a good scheme for increasing the power density.
基金Supported by National Natural Science Foundation of China(Grant No.50877013)
文摘Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system,however it is restricted for large application because of low and complex process.A novel type of cylindrical,non-overlapping,transverse-flux,and permanent-magnet linear motor(TFPLM) is investigated,furthermore,a high power factor and less process complexity structure research is developed.The impact of magnetic leakage factor on power factor is discussed,by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM,an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor.The relation between power factor and structure parameter is investigated,and a structure parameter optimization method is proposed taking power factor maximum as a goal.At last,the test bench is founded,starting experimental and generating experimental are performed,and a good agreement of simulation and experimental is achieved.The power factor is improved and the process complexity is decreased.This research provides the instruction to design high-power factor permanent-magnet linear generator.
文摘This paper deals with the design of high power – low dimensions axial-flux permanent-magnet motor intended for trac-tion application. First, two motor configurations are analytically designed and compared using finite element calcula-tion. Then, the configuration yielding the best performances is integrated and modelled with the whole traction chain under MATLAB/SIMULINK environment in order to demonstrate the motor operation on a large speed band.
基金Supported in part by the National Natural Science Foundation of China under Grant 51977099in part by the Natural Science Foundation of Jiangsu Province under Grant BK20191225.
文摘A novel dual-side primary permanent-magnet vernier linear(DS-PPMVL)motors is proposed.The novelty of the proposed motors is the design of asymmetric consequent poles on the mover,which can effectively enforce the flux-modulation effect and improve the thrust force performance.First,the topologies and operation principle are introduced.Subsequently,the structure relationships between the existing and proposed motors are discussed.Then,a unified analytical model is built.Accordingly,the magnetic field generated by the consequent pole is calculated.Meanwhile,the performance improvement mechanism with the asymmetric consequent pole is analyzed.To improve the efficiency of motor optimization,multi-objective optimization method is adopted to obtain the global optimal solution combination of structure parameters.The proposed motors exhibit higher thrust force,higher force density,less PM consumption,and better overload performance than the existing DS-PPMVL motor.Finally,experiments are conducted based on the existing prototype to verify the accuracy of the design and analysis.
基金Supported by the Key Research and Development Program of Jiangsu Province(BE2018107).
文摘The influence of bread-loaf shaped magnet poles under parallel magnetization on the cogging torque of surface-mounted permanent magnet(SPM)motors is studied.For the SPM motors having magnetic poles with eccentricity and sine harmonic compensation,the electromagnetic performances of integer and fractional slot motors are compared.It is found that the cogging torque and torque ripple of the integer and fractional slot motors can be reduced with the same eccentric magnet pole.The cogging torque and torque ripple of a fractional slot motor can be decreased by sine harmonic compensation,however,the same sine harmonic compensation has a small influence in integer slot motors.By varying the magnetic poles,the contribution of the field harmonics(k=(2n+1)p),which are a direct result of magnet magnetization,to the cogging torque also changes.The electromagnetic performance of a 3 kW prototype is tested,and it is found that the experimental results validate the theoretical investigation.
基金Supported by National Natural Science Foundation of China(U1361109,51777060)Natural Science Foundation of Henan province(162300410117).
文摘The surface-mounted and interior permanent magnet synchronous motor(SIPMSM)has the characteristics of multiple variables,strong coupling and nonlinearity.In order to improve the performance of SIPMSM,this paper presents a multi-objective optimal design process using Taguchi and response surface methodology(RSM).The peak value of cogging torque(PVCT),ratio value of average torque and permanent magnet weight(RTW),torque ripple and back-EMF total harmonics distortion(ETHD)are selected as optimization goals.The experiment matrix is established by Taguchi method,and analyzed the tendency and proportion of the effect of the optimization parameters on SIPMSM performance.The rules of choosing multi-objective optimization parameters are obtained.The least-squares method is used to establish the optimal objective function,and RSM is used to obtain the resolutions of the optimization objective function.Comparing the initial performance with optimized performance verifies the effectiveness of the proposed method.
文摘Recent advancements in power electronics technology evolves inverter fed electric motors.Speed signals and rotor position are essential for controlling an electric motor accurately.In this paper,the sensorless speed control of surface-mounted permanent magnet synchronous motor(SPMSM)has been attempted.SPMSM wants a digital inverter for its precise working.Hence,this study incor-poratesfifteen level inverter to the SPMSM.A sliding mode observer(SMO)based sensorless speed control scheme is projected to determine rotor spot and speed of the multilevel inverter(MLI)fed SPMSM.MLI has been operated using a multi carrier pulse width modulation(MCPWM)strategy for generation offif-teen level voltages.The simulation works are executed with MATLAB/SIMU-LINK software.The steadiness and the heftiness of the projected model have been investigated under no loaded and loaded situations of SPMSM.Furthermore,the projected method can be adapted for electric vehicles.
基金Supported by the Youth Program of the National Natural Science Foundation of China(51970970).
文摘Permanent magnet(PM)motors are widely used in our daily lives.Taking a surface-mounted PM motor as an example,a magnetic circuit model considering the peripheral magnetic flux leakage is established.Maxwell software is used to simulate different loads and thicknesses and the materials of the shielding layers.The magnetic flux leakage around the motor has a sinusoidal distribution in the space.The value of the magnetic flux leakage is inversely proportional to the power of P+1 from the surface of the core.The thicker the shielding layer,the smaller the magnetic leakage.The greater the relative permeability of the shielding layer,the better the shielding effect.The results provide ideas and recommendations for the magnetic flux leakage analysis and the design of non-magnetic or low magnetic motors.
基金supported by National Natural Science Foundation of China(Grant No. 51275264)National Hi-tech Research and Development Program of China(863 Program, Grant No. 2011AA11A269)
文摘Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.
基金Supported by the Key Program of National Natural Science Foundation of China under Grant No. 50937001the National Natural Science Foundation of China under Grant Nos. 10947011,11262004,61263021,and 50877028
文摘The nonlinear dynamics of permanent-magnet synchronous motor(PMSM) with v/f control signals is investigated intensively.First,the equilibria and steady-state characteristics of the system are formulated by analytical analysis.Then,some of its basic dynamical properties,such as characteristic eigenvalues,Lyapunov exponents and phase trajectories are studied by varying the values of system parameters.It is found that when the values of the system parameters are smaller,the PMSM operates in stable domains,no matter what the values of control gains are.With the values of parameters increasing,the unstability appears and PMSM falls into chaotic operation.Furthermore,the complex dynamic behaviors are verified by means of simulation.
基金This research was financially supported by the National Natural Science Foundation of China(Grant No.51605363)China Postdoctoral Science Foundation(Grant No.2016M590922)Shaanxi Postdoctoral Research Project Funding.
文摘A primary permanent-magnet linear motor (PPMLM) has a robust secondary structure and high force density and is appropriate for direct-drive mechanical press. The structure of a four-side PPMLM drive press is presented based on our previous research. The entire press control system is constructed to realize various flexible forming processes. The control system scheme is determined in accordance with the mathematical model of PPMLM, and active disturbance rejection control is implemented in the servo controller. Field-circuit coupling simulation is applied to estimate the system’s performance. Then, a press prototype with 6 kN nominal force is fabricated, and the hardware platform of the control system is constructed for experimental study. Punch strokes with 0.06 m displacement are implemented at trapezoidal speeds of 0.1 and 0.2 m/s;the dynamic position tracking errors are less than 0.45 and 0.82 mm, respectively. Afterward, continuous reciprocating strokes are performed, and the positioning errors at the bottom dead center are less than 0.015 mm. Complex pulse trajectories are also achieved. The proposed PPMLM drive press exhibits a fast dynamic response and favorable tracking precision and is suitable for various forming processes.
基金Supported by Key Research and Development Program of Jiangsu Province under Grant BE2018107,Natural Science Foundation of Jiangsu Province under Grant BK20171298Natural Science Foundation of Jiangsu Higher Education Institutions under Grant 18KJB470008.
文摘This paper presents a comparative performance analysis of a new five-phase fault-tolerant flux-switching permanent-magnet(FT-FSPM)motor for high-reliability applications under the two most popular control schemes,namely,field-oriented control(FOC)and direct torque control(DTC)based on stator-flux orientation.Firstly,the new motor topology and structural characteristics are briefly presented.Secondly,the d-and q-axis for the FT-FSPM motor are defined,which is crucial to the mathematical model and control scheme,and the mathematical models are derived.Then,two control schemes,i.e.,FOC and DTC,and the main system are proposed.The operational principles of the two control schemes are presented,and space vector pulse width modulation(SVPWM)based on four neighboring vectors is adopted to reduce current harmonics and torque ripples.Finally,the simulated and experimental results are given,and performance analysis of the two control schemes are compared and discussed.The results reveal that FOC scheme has the sinusoidal phase current and low torque ripples,while the DTC scheme has fast dynamic response,verifying the effectiveness of the two proposed control schemes.This paper is a primary investigation for more possible improvements in the control schemes of the five-phase FS-FTPM motor.
基金Supported by the National Natural Science Foundation of China(No.11603024)
文摘In this study,a composite strategy based on sliding-mode control( SMC) is employed in a permanent-magnet synchronous motor vector control system to improve the system robustness performance against parameter variations and load disturbances. To handle the intrinsic chattering of SMC,an adaptive law and an extended state observer( ESO) are utilized in the speed SMC controller design. The adaptive law is used to estimate the internal parameter variations and compensate for the disturbances caused by model uncertainty. In addition,the ESO is introduced to estimate the load disturbance in real time. The estimated value is used as a feed-forward compensator for the speed adaptive sliding-mode controller to further increase the system's ability to resist disturbances. The proposed composite method,which combines adaptive SMC( ASMC) and ESO,is compared with PI control and ASMC. Both the simulation and experimental results demonstrate that the proposed method alleviates the chattering of SMC systems and improves the dynamic response and robustness of the speed control system against disturbances.
文摘A robustness-tracking control scheme based on combining H_∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking and robustness of the linear servo system. The sliding mode tracking controller is designed to ensure the system has a fast tracking characteristic to the command, and the H_∞ robustness controller suppresses the disturbances well within the close loop(including the load and the end effect force of linear motor etc.) and effectively minimizes the chattering of sliding mode control which influences the steady state performance of the system. Simulation results show that this control scheme enhances the track-command-ability and the robustness of the linear servo system, and in addition, it has a strong robustness to parameter variations and resistance disturbances.
基金Supported by the Anhui Natural Science Foundation of China(1508085ME87)Natural Science Foundation of Hefei University(06KY010ZR).
文摘In this paper,a novel bipolar transverse flux motor with stator permanent magnet excitation is proposed based on the summary and analysis of the transverse flux motor and stator permanent magnet motor research achievements in recent years.It has been shown that the motor realizes the bipolar winding flux through the detailed analysis.The motor can be used as an inwheel motor in electric vehicles because of its external rotor and permanent magnets mounted on the stator radial surface.Secondly the basic structure and working principle of the motor are introduced.Then the relationship between the motor power and its dimensions is deduced.Thirdly the 3 dimensional finite element method(3D FEM)is used to analyze the static and transient characteristics,including the no-load magnetic field distribution and winding back EMF.Finally a three-phase 600W prototype has been made and the experimental analysis is carried out.
基金Project supported by the National Natural Science Foundation of China(Nos.51475414 and 51221004)
文摘A hybrid power transmission system (HPTS) is a promising way to save energy in a hydraulic excavator and the electric machine is one of the key components of the system. In this paper, a design process for permanent-magnet synchronous machines (PMSMs) in a hybrid hydraulic excavator (HHE) is presented based on the analysis of the working conditions and requirements of an HHE. A parameterized design approach, which combines the analytical model and the 2D finite element method (FEM), is applied to the electric machine to improve the design efficiency and accuracy. The analytical model is employed to optimize the electric machine efficiency and obtain the statordimension and flux density distribution. The rotor is designed with the FEM to satisfy the flux requirements obtained in stator design. The rotor configuration of the PMSM employs an interior magnet structure, thus resulting in some inverse saliency, which allows for much higher values in magnetic flux density. To reduce the rotor leakage, a disconnected type silicon steel block structure is adopted. To improve the air gap flux density distribution, the trapezoid permanent magnet (PM) and centrifugal rotor structure are applied to PMSM. Demagnetization and armature reactions are also taken into consideration and calculated by the FEM. A prototype of the newly designed electric machine has been fabri- cated and tested on the experimental platform. The analytical design results are validated by measurements.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51991383 and 52025073)。
文摘In this paper, two different designs, with dummy slots and bread-loaf magnets techniques, are presented to reduce the electromagnetic vibration in integral-slot surface-mounted permanent-magnet(SPM) machines. Firstly, the stator slotting effect on the magnetic field modulation and radial force modulation is investigated. It reveals the amplitude of the modulated magnetic field and modulated radial force is greatly affected by the slot opening effect, while the spatial order is closely associated with the slot numbers. Subsequently, the dummy slots and bread-loaf magnets design are developed for a 36-slot/12-pole integral-slot SPM machine to reduce the electromagnetic vibration. Finally, two SPM machines, with conventional and bread-loaf magnets,are manufactured. Experimental tests are carried out to validate the theoretical analyses.
文摘This paper focuses on modeling and perfor- mance predetermination of a photovoltaic (PV) system with a boost converter fed permanent magnet direct current (PMDC) motor-centrifugal pump load, taking the con- verter losses into account. Sizing is done based on the maximum power generated by the PV array at the average irradiation. Hence optimum sizing of the PV array for the given irradiation at the geographical location of interest is obtained using the predetermined values. The analysis presented here involves systems employing maximum power point tracking (MPPT) as they are more efficient than directly coupled systems. However, the voltage and power of the motor might rise above rated values for irradiations greater than the average when employing MPPT, hence a control scheme has been proposed to protect the PMDC motor from being damaged during these conditions. This control scheme appropriately chooses the optimum operating point of the system, ensuring long-term sustained operation. The numerical simulation of the system is performed in Matlab/Simulink and is validated with experimental results obtained from a 180 V, 0.5 hp PMDC motor coupled to a centrifugal pump. The operation of the system with the proposed control scheme is verified by varying the irradiation levels and the relevant results are presented.