A magnesium alloy AZ31 sheet was processed by ultrasonic shot peening treatment to fabricate a surface nanocrystalline,and a ball-on-disk dry sliding wear test was performed to evaluate the tribological behavior after...A magnesium alloy AZ31 sheet was processed by ultrasonic shot peening treatment to fabricate a surface nanocrystalline,and a ball-on-disk dry sliding wear test was performed to evaluate the tribological behavior after treatment.The microstructure observation indicated a gradient nanocrystalline structure was formed after USSP treatment.The microhardness at the top surface was improved from 60 HV to 145 HV after treatment.The formed nanocrystalline resulted in an easy formation of MgO patches on the surface and reduced the coefficient of friction.Moreover,the formed nanocrystalline leaded to a retard of delamination with increasing the sliding speed and applied load,which was due to its stronger sub-surface.Under high sliding speed(0.5 m/s)and high applied load(50 N),it was firstly found that the formed nanocrystalline prevented the happening of thermal softening and melting.The possible reasons accounting for the prevention of thennal softening and melting were discussed accordingly.展开更多
Based on the microscopic observations and measurements, the mechanical behavior of the surface-nanocrystallized Al-alloy material at microscale is investigated experimentally and theoretically. In the experimental res...Based on the microscopic observations and measurements, the mechanical behavior of the surface-nanocrystallized Al-alloy material at microscale is investigated experimentally and theoretically. In the experimental research, the compressive stress-strain curves and the hardness depth curves are measured. In the theoretical simulation, based on the material microstructure characteristics and the experimental features of the compression and indentation, the microstructure cell models are developed and the strain gradient plasticity theory is adopted. The material compressive stress-strain curves and the hardness depth curves are predicted and simulated. Through comparison of the experimental results with the simulation results, the material and model parameters are determined.展开更多
文摘A magnesium alloy AZ31 sheet was processed by ultrasonic shot peening treatment to fabricate a surface nanocrystalline,and a ball-on-disk dry sliding wear test was performed to evaluate the tribological behavior after treatment.The microstructure observation indicated a gradient nanocrystalline structure was formed after USSP treatment.The microhardness at the top surface was improved from 60 HV to 145 HV after treatment.The formed nanocrystalline resulted in an easy formation of MgO patches on the surface and reduced the coefficient of friction.Moreover,the formed nanocrystalline leaded to a retard of delamination with increasing the sliding speed and applied load,which was due to its stronger sub-surface.Under high sliding speed(0.5 m/s)and high applied load(50 N),it was firstly found that the formed nanocrystalline prevented the happening of thermal softening and melting.The possible reasons accounting for the prevention of thennal softening and melting were discussed accordingly.
基金supported by the National Natural Science Foundation of China(Grant No.19925211)jointly supported by"Bai Ren Plan"of Chinese Academy of Sciences.
文摘Based on the microscopic observations and measurements, the mechanical behavior of the surface-nanocrystallized Al-alloy material at microscale is investigated experimentally and theoretically. In the experimental research, the compressive stress-strain curves and the hardness depth curves are measured. In the theoretical simulation, based on the material microstructure characteristics and the experimental features of the compression and indentation, the microstructure cell models are developed and the strain gradient plasticity theory is adopted. The material compressive stress-strain curves and the hardness depth curves are predicted and simulated. Through comparison of the experimental results with the simulation results, the material and model parameters are determined.