The number of dispersion curves increases significantly when the scale of a short-period dense array increases.Owing to a substantial increase in data volume,it is important to quickly evaluate dispersion curve qualit...The number of dispersion curves increases significantly when the scale of a short-period dense array increases.Owing to a substantial increase in data volume,it is important to quickly evaluate dispersion curve quality as well as select the available dispersion curve.Accordingly,this study quantitatively evaluated dispersion curve quality by training a convolutional neural network model for ambient noise tomography using a short-period dense array.The model can select high-quality dispersion curves that exhibit a≤10%difference between the results of manual screening and the proposed model.In addition,this study established a dispersion curve loss function by analyzing the quality of the dispersion curve and the corresponding influencing factors,thereby estimating the number of available dispersion curves for the existing observation systems.Furthermore,a Monte Carlo simulation experiment is used to illustrates the station-pair interval distance probability density function,which is independent of station number in the observational system with randomly deployed stations.The results suggested that the straight-line length should exceed 15 km to ensure that loss rate of dispersion curves remains<0.5,while maintaining the threshold ambient noise tomography accuracy within the study area.展开更多
Coal seams have a pronounced bedding structure with developed cracks and exhibit signifi cant anisotropy.However,few studies have examined the frequency dispersion properties of channel waves in anisotropic coal seams...Coal seams have a pronounced bedding structure with developed cracks and exhibit signifi cant anisotropy.However,few studies have examined the frequency dispersion properties of channel waves in anisotropic coal seams.In this study,numerical solutions are calculated using the generalized reflection–transmission coefficient method for the dispersion curves of Love channel waves in vertical transversely isotropic(VTI)and horizontal transversely isotropic(HTI)medium models.Moreover,the frequency dispersion characteristics of Love channel waves in several typical transversely isotropic models are analyzed.We fi nd that the dispersion curves for isotropic and VTI media diff er signifi cantly.In addition,the phase and Airy-phase velocities in VTI media are higher than those in isotropic media.Thus,neglecting this difference in practical channel wave detection will result in large detection errors.The dispersion curves for the isotropic and HTI media do not differ signifi cantly,and the Airy-phase velocities of various modes are similar.The group-velocity curve for a coal seam model containing a dirt band is found to be extremely irregular.The fundamental-mode Airy phase is not pronounced,but the fi rst-mode Airy phase can be clearly observed.Hence,fi rst-mode channel waves are suitable for detecting dirt bands.展开更多
The dispersion characteristics of shallow water can be described by the dispersion curves,which contain substantial ocean parameter information.A fast ocean parameter inversion method based on dispersion curves with a...The dispersion characteristics of shallow water can be described by the dispersion curves,which contain substantial ocean parameter information.A fast ocean parameter inversion method based on dispersion curves with a single hydrophone is presented in this paper.The method is achieved through Bayesian theory.Several sets of dispersion curves extracted from measured data are used as the input function.The inversion is performed by matching a replica calculated with a dispersion formula.The bottom characteristics can be described by the bottom reflection phase shift parameter P.The propagation range and the depth can be inverted quickly when the seabed parameters are represented by on parameter P.The inversion results improve the inversion efficiency of the seabed parameters.Consequently,the inversion efficiency and accuracy are improved while the number of inversion parameters is decreased and the computational speed of replica is increased.The inversion results have lower error than the reference values,and the dispersion curves calculated with inversion parameters are also in good agreement with extracted curves from measured data;thus,the effectiveness of the inversion method is demonstrated.展开更多
Existing sequential parameter estimation methods use the acoustic pressure of a line array as observations. The modal dispersion curves are employed to estimate the sound speed profile(SSP) and geoacoustic parameter...Existing sequential parameter estimation methods use the acoustic pressure of a line array as observations. The modal dispersion curves are employed to estimate the sound speed profile(SSP) and geoacoustic parameters based on the ensemble Kalman filter. The warping transform is implemented to the signals received by a single hydrophone to obtain the dispersion curves. The experimental data are collected at a range-independent shallow water site in the South China Sea. The results indicate that the SSPs are well estimated and the geoacoustic parameters are also well determined. Comparisons of the observed and estimated modal dispersion curves show good agreement.展开更多
Surface wave methods are becoming increasingly popular in many geotechnical applications and in earthquake seismology due to their noninvasive characteristics.Inverse surface wave dispersion curves are a crucial step ...Surface wave methods are becoming increasingly popular in many geotechnical applications and in earthquake seismology due to their noninvasive characteristics.Inverse surface wave dispersion curves are a crucial step in most surface wave methods.Many inversion methods have been applied to surface wave dispersion curve inversion,including linearized inversion and nonlinearized inversion methods.In this study,a hybrid inversion method of Damped Least Squares(DLS) with Very Fast Simulated Annealing(VFSA) is developed for multi-mode Rayleigh wave dispersion curve inversion.Both synthetic and in situ fi eld data were used to verify the validity of the proposed method.The results show that the proposed method is superior to the conventional VFSA method in aiming at global minimum,especially when parameter searching space is adjacent to real values of the parameters.The advantage of the new method is that it retains both the merits of VFSA for global search and DLS for local search.At high temperatures,the global search dominates the runs,while at a low temperatures,the local search dominates the runs.Thus,at low temperatures,the proposed method can almost directly approach the actual model.展开更多
A geoacoustic inversion method is proposed based on the modal dispersion curve of two-wideband explosive signals for range-dependent environment. It is applied to the wideband explosive sound source data from the Sout...A geoacoustic inversion method is proposed based on the modal dispersion curve of two-wideband explosive signals for range-dependent environment. It is applied to the wideband explosive sound source data from the South China Sea in 2012. The travel time differences of different modes at various frequencies and distances are extracted by warping transform. The mean bottom acoustic parameters are inverted by matching the theoretical modal time differences to that of the experimental data. The inversion results are validated by using other explosive signals at different distances.展开更多
Site engineering seismic survey provides basic data for seismic effect analysis. As an important parameter of soil, shear-wave velocity is usually obtained through wave velocity testing in borehole. In this paper, the...Site engineering seismic survey provides basic data for seismic effect analysis. As an important parameter of soil, shear-wave velocity is usually obtained through wave velocity testing in borehole. In this paper, the passive source surface-wave method is introduced into the site engineering seismic survey and practically applied in an engineering site of Shijingshan District. By recording the ubiquitous weak vibration on the earth surface, extract the dispersion curve from the surface-wave components using the SPAC method and obtain the shear-wave velocity structure from inversion. Over the depth of 42 m under- ground, it totally consists of five layers with interface depth of 3.31, 4.50, 7.23, 17.41, and 42.00 m; and shear-wave velocity of 144.0, 198.3, 339.4, 744.2, and 903.7 m/s, respectively. The inversion result is used to evaluate site classification, determine the maximum shear modulus of soil, provide basis for further seismic hazard analysis and site assessment or site zoning, etc. The result shows that the passive source surface-wave method is feasible in the site engineering seismic survey and can replace boreholes,shorten survey period, and reduce engineering cost to some extent.展开更多
The velocity distribution of layers from surface wave dispersion curve is a severely nonlinear program. Base on the Metropolis rule,we improved the simulated annealing algorithm to simultaneously inverse the velocitie...The velocity distribution of layers from surface wave dispersion curve is a severely nonlinear program. Base on the Metropolis rule,we improved the simulated annealing algorithm to simultaneously inverse the velocities and thicknesses using the dispersion data and identified the Moho and the bottom of lithosphere. The application to the numerical examples with 5% noise shows the velocity RMS is 1. 56% between the non-linear results and the original models when the condition of selecting method for temperature parameters and initial temperature are satisfied. Using the pure dispersions of Rayleigh wave,the nonlinear inversion has been carried out for S-wave velocities and thicknesses of the vertical profile crossing the Indian Plate,the Qinghai-Tibetan Plateau,and the Tarim Basin. It indicated that the crustal thickness is about 70 km in the Qiangtang block,while in the hinterland of the Qinghai-Tibetan Plateau the lithosphere is relatively thin(~ 130 km)from the velocity values and their offsets.展开更多
Corresponding to the atmospheric transmission windows of the electromagnetic spectrum in the low terahertz range,the mode coupling and dispersion characteristics of two helically corrugated waveguides(HCW)in the frequ...Corresponding to the atmospheric transmission windows of the electromagnetic spectrum in the low terahertz range,the mode coupling and dispersion characteristics of two helically corrugated waveguides(HCW)in the frequency ranges of 90 GHz-100 GHz and 260 GHz-265 GHz are studied.Through analytic calculations and numerical simulations,dispersion curves and structural parameters of the two frequency ranges waveguides are obtained.A novel method was proposed to obtain the dispersion of the HCW from the eigenwave solution using a periodic boundary condition.The HCW in a frequency range of 90 GHz-100 GHz was fabricated and its dispersion performance was measured.By comparing the measured results with the theoretical and the simulated results,the validity of the analytical and simulation method is verified.Limited to our machining capability,the dispersion of the 260 GHz-265 GHz HCW was only simulated and calculated and it was found that the results agree well with each other.展开更多
The effects of the electromagnetically induced transparency and dispersion of a A-type three-level atomic system are experimentally measured with a vapour cell of Cs atoms. The steep dispersion at low absorption is ob...The effects of the electromagnetically induced transparency and dispersion of a A-type three-level atomic system are experimentally measured with a vapour cell of Cs atoms. The steep dispersion at low absorption is observed. Thus a small group velocity for the probe beam is inferred from the measured dispersion curve.展开更多
Ashcroft's local empty core (EMC) model pseudopotential in the second-order perturbation theory is used to study the electron dispersion relation, the Fermi energy, and deviation in the Fermi energy from free elect...Ashcroft's local empty core (EMC) model pseudopotential in the second-order perturbation theory is used to study the electron dispersion relation, the Fermi energy, and deviation in the Fermi energy from free electron value for the liquid alkali metals and their equiatomic binary alloys for the first time. In the present computation, the use of pseudo-alloy-atom model (PAA) is proposed and found successful. The influence of the six different forms of the local field correction functions proposed by Hartree (H), Vashishta Singwi (VS), Taylor (T), lehimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) on the aforesaid electronic properties is examined explicitly, which reflects the varying effects of screening. The depth of the negative hump in the electron dispersion of liquid alkalis decreases in the order Li --→ K, except for Rb and Cs, it increases. The results of alloys are in predictive nature.展开更多
Dispersion parameter is an important parameter for the establishment of groundwater solute transport model.The dispersion test uses sodium chloride as a tracer,which was conducted in a site in Jilin City.The standard ...Dispersion parameter is an important parameter for the establishment of groundwater solute transport model.The dispersion test uses sodium chloride as a tracer,which was conducted in a site in Jilin City.The standard curve comparison method was used to solve the dispersion parameters of the aquifer under the natural flow field.The test results show that under the natural flow field,the longitudinal dispersion of unconfined aquifer in Jilin City is 0.400m,and the transverse dispersion is 1.933×10-5~6.557×10-3m;while the longitudinal dispersion coefficient is 0.246m2/d,the transverse dispersion coefficient is 1.191×10-5~4.039×10-3m2/d.The above results can provide an important parameter basis for the establishment of groundwater solute transport model,the accurate prediction of temporal and spatial variation of pollutant concentration in groundwater and the formulation of groundwater pollution prevention and control scheme.展开更多
Ambient noise tomography is a rapidly emerging field of seismological research. This paper presents the current status of ambient noise data processing and its development history over the past several years, with the...Ambient noise tomography is a rapidly emerging field of seismological research. This paper presents the current status of ambient noise data processing and its development history over the past several years, with the intention to explain and justify this development through salient examples. The ambient noise data processing procedure can be divided into four principal phases: ① single station data preparation; ② cross- correlation and temporal stacking; ③ measurements of dispersion curves ( performed with frequency-time analysis for both group and phase speeds) ; ④ quality control, including SNR analysis and selection of the acceptable measurements. In addition, we provide a specific solution for a better use of the seismic station data to ambient noise study.展开更多
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0701)the Fund from the Key Laboratory of Deep-Earth Dynamics of the Ministry of Natural Resources(No.J1901-38)+1 种基金the National Natural Science Foundation of China(Nos.42174121 and 91962109)the China Geological Survey Project(No.DD20190001).
文摘The number of dispersion curves increases significantly when the scale of a short-period dense array increases.Owing to a substantial increase in data volume,it is important to quickly evaluate dispersion curve quality as well as select the available dispersion curve.Accordingly,this study quantitatively evaluated dispersion curve quality by training a convolutional neural network model for ambient noise tomography using a short-period dense array.The model can select high-quality dispersion curves that exhibit a≤10%difference between the results of manual screening and the proposed model.In addition,this study established a dispersion curve loss function by analyzing the quality of the dispersion curve and the corresponding influencing factors,thereby estimating the number of available dispersion curves for the existing observation systems.Furthermore,a Monte Carlo simulation experiment is used to illustrates the station-pair interval distance probability density function,which is independent of station number in the observational system with randomly deployed stations.The results suggested that the straight-line length should exceed 15 km to ensure that loss rate of dispersion curves remains<0.5,while maintaining the threshold ambient noise tomography accuracy within the study area.
基金supported by the National Key R&D Program of China (No. 2018YFC0807804-3)Key R&D Program of Anhui Province (No. 1804a0802213)Scientifi c Research Foundation for the introduction talent of Anhui University of Science and Technology。
文摘Coal seams have a pronounced bedding structure with developed cracks and exhibit signifi cant anisotropy.However,few studies have examined the frequency dispersion properties of channel waves in anisotropic coal seams.In this study,numerical solutions are calculated using the generalized reflection–transmission coefficient method for the dispersion curves of Love channel waves in vertical transversely isotropic(VTI)and horizontal transversely isotropic(HTI)medium models.Moreover,the frequency dispersion characteristics of Love channel waves in several typical transversely isotropic models are analyzed.We fi nd that the dispersion curves for isotropic and VTI media diff er signifi cantly.In addition,the phase and Airy-phase velocities in VTI media are higher than those in isotropic media.Thus,neglecting this difference in practical channel wave detection will result in large detection errors.The dispersion curves for the isotropic and HTI media do not differ signifi cantly,and the Airy-phase velocities of various modes are similar.The group-velocity curve for a coal seam model containing a dirt band is found to be extremely irregular.The fundamental-mode Airy phase is not pronounced,but the fi rst-mode Airy phase can be clearly observed.Hence,fi rst-mode channel waves are suitable for detecting dirt bands.
基金The Scientific Research Foundation of Jiangsu University of Science and Technology for Recruited Talents under contract No.1032931907the Basic Science (Natural Science) General Program of Jiangsu Province Higher Education Institutions under contract No.21KJD140001。
文摘The dispersion characteristics of shallow water can be described by the dispersion curves,which contain substantial ocean parameter information.A fast ocean parameter inversion method based on dispersion curves with a single hydrophone is presented in this paper.The method is achieved through Bayesian theory.Several sets of dispersion curves extracted from measured data are used as the input function.The inversion is performed by matching a replica calculated with a dispersion formula.The bottom characteristics can be described by the bottom reflection phase shift parameter P.The propagation range and the depth can be inverted quickly when the seabed parameters are represented by on parameter P.The inversion results improve the inversion efficiency of the seabed parameters.Consequently,the inversion efficiency and accuracy are improved while the number of inversion parameters is decreased and the computational speed of replica is increased.The inversion results have lower error than the reference values,and the dispersion curves calculated with inversion parameters are also in good agreement with extracted curves from measured data;thus,the effectiveness of the inversion method is demonstrated.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11434012,11774374,11404366 and41561144006
文摘Existing sequential parameter estimation methods use the acoustic pressure of a line array as observations. The modal dispersion curves are employed to estimate the sound speed profile(SSP) and geoacoustic parameters based on the ensemble Kalman filter. The warping transform is implemented to the signals received by a single hydrophone to obtain the dispersion curves. The experimental data are collected at a range-independent shallow water site in the South China Sea. The results indicate that the SSPs are well estimated and the geoacoustic parameters are also well determined. Comparisons of the observed and estimated modal dispersion curves show good agreement.
基金International Science&Technology Cooperation Program of China under Grant No.2011DFA71100the National Key Technology R&D Program under Grant No.2014BAK03B01the National Basic Research Program of China(973 Program)under Grant No.2007CB714201
文摘Surface wave methods are becoming increasingly popular in many geotechnical applications and in earthquake seismology due to their noninvasive characteristics.Inverse surface wave dispersion curves are a crucial step in most surface wave methods.Many inversion methods have been applied to surface wave dispersion curve inversion,including linearized inversion and nonlinearized inversion methods.In this study,a hybrid inversion method of Damped Least Squares(DLS) with Very Fast Simulated Annealing(VFSA) is developed for multi-mode Rayleigh wave dispersion curve inversion.Both synthetic and in situ fi eld data were used to verify the validity of the proposed method.The results show that the proposed method is superior to the conventional VFSA method in aiming at global minimum,especially when parameter searching space is adjacent to real values of the parameters.The advantage of the new method is that it retains both the merits of VFSA for global search and DLS for local search.At high temperatures,the global search dominates the runs,while at a low temperatures,the local search dominates the runs.Thus,at low temperatures,the proposed method can almost directly approach the actual model.
基金Supported by the National Natural Science Foundation of China under Grant No 11174235the Fundamental Research Funds for the central Universities of Ministry of Education of China under Grant No 3102014JC02010301
文摘A geoacoustic inversion method is proposed based on the modal dispersion curve of two-wideband explosive signals for range-dependent environment. It is applied to the wideband explosive sound source data from the South China Sea in 2012. The travel time differences of different modes at various frequencies and distances are extracted by warping transform. The mean bottom acoustic parameters are inverted by matching the theoretical modal time differences to that of the experimental data. The inversion results are validated by using other explosive signals at different distances.
基金supported by National Natural Science Foundation of China (No. 41174085)Chinese Academy of Sciences (KZZD-EW-TZ-19)China Geological Survey (12120113101400)
文摘Site engineering seismic survey provides basic data for seismic effect analysis. As an important parameter of soil, shear-wave velocity is usually obtained through wave velocity testing in borehole. In this paper, the passive source surface-wave method is introduced into the site engineering seismic survey and practically applied in an engineering site of Shijingshan District. By recording the ubiquitous weak vibration on the earth surface, extract the dispersion curve from the surface-wave components using the SPAC method and obtain the shear-wave velocity structure from inversion. Over the depth of 42 m under- ground, it totally consists of five layers with interface depth of 3.31, 4.50, 7.23, 17.41, and 42.00 m; and shear-wave velocity of 144.0, 198.3, 339.4, 744.2, and 903.7 m/s, respectively. The inversion result is used to evaluate site classification, determine the maximum shear modulus of soil, provide basis for further seismic hazard analysis and site assessment or site zoning, etc. The result shows that the passive source surface-wave method is feasible in the site engineering seismic survey and can replace boreholes,shorten survey period, and reduce engineering cost to some extent.
基金sponsored by the National Natural Science Foundation of China(41774069,41504047 and 41604054)
文摘The velocity distribution of layers from surface wave dispersion curve is a severely nonlinear program. Base on the Metropolis rule,we improved the simulated annealing algorithm to simultaneously inverse the velocities and thicknesses using the dispersion data and identified the Moho and the bottom of lithosphere. The application to the numerical examples with 5% noise shows the velocity RMS is 1. 56% between the non-linear results and the original models when the condition of selecting method for temperature parameters and initial temperature are satisfied. Using the pure dispersions of Rayleigh wave,the nonlinear inversion has been carried out for S-wave velocities and thicknesses of the vertical profile crossing the Indian Plate,the Qinghai-Tibetan Plateau,and the Tarim Basin. It indicated that the crustal thickness is about 70 km in the Qiangtang block,while in the hinterland of the Qinghai-Tibetan Plateau the lithosphere is relatively thin(~ 130 km)from the velocity values and their offsets.
文摘Corresponding to the atmospheric transmission windows of the electromagnetic spectrum in the low terahertz range,the mode coupling and dispersion characteristics of two helically corrugated waveguides(HCW)in the frequency ranges of 90 GHz-100 GHz and 260 GHz-265 GHz are studied.Through analytic calculations and numerical simulations,dispersion curves and structural parameters of the two frequency ranges waveguides are obtained.A novel method was proposed to obtain the dispersion of the HCW from the eigenwave solution using a periodic boundary condition.The HCW in a frequency range of 90 GHz-100 GHz was fabricated and its dispersion performance was measured.By comparing the measured results with the theoretical and the simulated results,the validity of the analytical and simulation method is verified.Limited to our machining capability,the dispersion of the 260 GHz-265 GHz HCW was only simulated and calculated and it was found that the results agree well with each other.
基金Supported by the Overseas Youth Scholar Collaboration Foundation(No.69928504)the National Natural Science Foundation of China under Grant No.69978013the Shanxi Province Young Science Foundation(No.20001016).
文摘The effects of the electromagnetically induced transparency and dispersion of a A-type three-level atomic system are experimentally measured with a vapour cell of Cs atoms. The steep dispersion at low absorption is observed. Thus a small group velocity for the probe beam is inferred from the measured dispersion curve.
文摘Ashcroft's local empty core (EMC) model pseudopotential in the second-order perturbation theory is used to study the electron dispersion relation, the Fermi energy, and deviation in the Fermi energy from free electron value for the liquid alkali metals and their equiatomic binary alloys for the first time. In the present computation, the use of pseudo-alloy-atom model (PAA) is proposed and found successful. The influence of the six different forms of the local field correction functions proposed by Hartree (H), Vashishta Singwi (VS), Taylor (T), lehimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) on the aforesaid electronic properties is examined explicitly, which reflects the varying effects of screening. The depth of the negative hump in the electron dispersion of liquid alkalis decreases in the order Li --→ K, except for Rb and Cs, it increases. The results of alloys are in predictive nature.
基金National Joint Foundation for Natural Science Focus(Project No.:U 19A20107).
文摘Dispersion parameter is an important parameter for the establishment of groundwater solute transport model.The dispersion test uses sodium chloride as a tracer,which was conducted in a site in Jilin City.The standard curve comparison method was used to solve the dispersion parameters of the aquifer under the natural flow field.The test results show that under the natural flow field,the longitudinal dispersion of unconfined aquifer in Jilin City is 0.400m,and the transverse dispersion is 1.933×10-5~6.557×10-3m;while the longitudinal dispersion coefficient is 0.246m2/d,the transverse dispersion coefficient is 1.191×10-5~4.039×10-3m2/d.The above results can provide an important parameter basis for the establishment of groundwater solute transport model,the accurate prediction of temporal and spatial variation of pollutant concentration in groundwater and the formulation of groundwater pollution prevention and control scheme.
基金Jointly funded by the Natural Science Foundation of China(40774018)the Seismic Scientific and Technological Spark Project,China Earthquake Administration(XH13009Y)the Earthquake Research Foundation,Earthquake Administration of Anhui Province(20120702)
文摘Ambient noise tomography is a rapidly emerging field of seismological research. This paper presents the current status of ambient noise data processing and its development history over the past several years, with the intention to explain and justify this development through salient examples. The ambient noise data processing procedure can be divided into four principal phases: ① single station data preparation; ② cross- correlation and temporal stacking; ③ measurements of dispersion curves ( performed with frequency-time analysis for both group and phase speeds) ; ④ quality control, including SNR analysis and selection of the acceptable measurements. In addition, we provide a specific solution for a better use of the seismic station data to ambient noise study.