Rosin,a renewable and abundant resource,has been extensively processed and chemically modified to endow it with special properties,especially in the surfactant industry.In this study,four rosin-based quaternary ammoni...Rosin,a renewable and abundant resource,has been extensively processed and chemically modified to endow it with special properties,especially in the surfactant industry.In this study,four rosin-based quaternary ammonium asymmetric gemini surfactants(RGS-2-n)with different alkyl chain lengths(n=12,14,16,18)were synthesized using a simple two-step method based on dehydroabietylamine as the raw material.The feasibility of these surfactants for cleaning purposes was comprehensively evaluated,suggesting that the surfactants own high surface activity and good cleaning performance.Furthermore,by successfully introducing the amine group of dehydroabietylamine into the hydrophilic group of the surfactants,we avoided its potential harm to the environment and water pollution.Density functional theory proves rosin-based gemini surfactants with asymmetric structure can further improve cleaning efficiency.Overall,our findings suggests that RGS-2-n surfactants are promising and sustainable candidates for cleaning electric plates,and provide new opportunities for rosin application in the electric industry.展开更多
To investigate the influence of surface characteristics of particles on electrorheological (ER) fluids, water free complex strontium titanate particles were synthesized through the sol gel technique and different ma...To investigate the influence of surface characteristics of particles on electrorheological (ER) fluids, water free complex strontium titanate particles were synthesized through the sol gel technique and different mass fraction of the surfactant was doped in particles and dispersed in silicon oil. The test shows that surface characteristics of particles have great influence on the behavior of ER fluids. Surface tension, surface polarity and interfacial polarization are strongly related to the surface status of the dispersed particles.展开更多
In order to improve the enhanced oil recovery of high-temperature and high-salt oilfields, a novel temperature-resistant and salt-tolerant surfactant (denoted as SDB-7) was synthesized and evaluated for the Tahe Oil...In order to improve the enhanced oil recovery of high-temperature and high-salt oilfields, a novel temperature-resistant and salt-tolerant surfactant (denoted as SDB-7) was synthesized and evaluated for the Tahe Oilfield (Xinjiang, China), which is representative of high-temperature and high-salt oilfields. It has a central reservoir temperature of 140 ℃ and salinity of 22.6× 10^4 mg/L. The temperature-resistant and salt-tolerant performance, interfacial activity, oil displacement efficiency, aging properties, and adsorption properties of the synthesized surfactant were evaluated for Tahe Oilfield flooding. The results showed that the SDB-7 was temperature-resistant and salt-tolerant capacity of 140 ℃ and 22.6×10^4 rag/ L, respectively, oil displacement efficiency under static condition of 84%, and adsorption loss of 0.4 mg/ g (less than 1 mg/g-oil sand). In the heat aging experiment (under the temperature of 140 ℃ for 60 days), the oil-water interracial tension and oil displacement efficiency of SDB-7 were almost unchanged. The oil displacement experiments showed that, under the temperature of 140 ℃ and the salinity of 22.6× 10^4 mg/L, the surfactant SDB-7 can enhance oil recovery by 14.5% after water flooding,suggesting that SDB-7 has a promising application in high temperature and high salinity (HT/HS) reservoir.展开更多
AIM: To investigate the early expression of surfactant proteins D(SP-D) in Fusarium solani infected rat cornea. METHODS: Wistar rats were divided into group A, B and C randomly. The right eyes were chosen as the exper...AIM: To investigate the early expression of surfactant proteins D(SP-D) in Fusarium solani infected rat cornea. METHODS: Wistar rats were divided into group A, B and C randomly. The right eyes were chosen as the experiment one. Group A was control group. Group B was not inoculated with Fusarium solani. Group C was taken as fusarium solani keratitis model. Five rats in group B and C were executed randomly at 6, 12, 24, 48 and 96 hours respectively after the experimental model being established. The expression of SP-D was assessed through immunohistochemistry and reverse transcription polyrnerase chain reaction(RT-PCR). RESULTS: RT-PCR detected that the SP-D mRNA expression was low in the corneal of normal rats and group B. The expression of fungal infected cornea increased gradually and reached the peak at 24 hours in group C. The synchronous expression of group B and C were in significant difference (P<0.01). Immunohistochemisty discovered the protein of SP-D expression was increased gradually from 12 hours and reached the peak at 48 hours in group C. The synchronous expression of group B and C were also in significant difference (P<0.01). CONCLUSION: There exists SP-D in rat corneal tissue and the expression is significantly increased at the early period of fusarium solani infected cornea. SP-D may play a role in the early innate immunity response of the corneal resistance to Fusarium solani infection.展开更多
The ability of a novel nonionic CO2 -soluble surfactant to propagate foam in porous media was compared with that of a conventional anionic surfactant(aqueous soluble only)through core floods with Berea sandstone cor...The ability of a novel nonionic CO2 -soluble surfactant to propagate foam in porous media was compared with that of a conventional anionic surfactant(aqueous soluble only)through core floods with Berea sandstone cores.Both simultaneous and alternating injections have been tested.The novel foam outperforms the conventional one with respect to faster foam propagation and higher desaturation rate.Furthermore,the novel injection strategy,CO2 continuous injection with dissolved CO2 -soluble surfactant,has been tested in the laboratory.Strong foam presented without delay.It is the first time the measured surfactant properties have been used to model foam transport on a field scale to extend our findings with the presence of gravity segregation.Different injection strategies have been tested under both constant rate and pressure constraints.It was showed that novel foam outperforms the conventional one in every scenario with much higher sweep efficiency and injectivity as well as more even pressure redistribution.Also,for this novel foam,it is not necessary that constant pressure injection is better,which has been concluded in previous literature for conventional foam.Furthermore,the novel injection strategy,CO2 continuous injection with dissolved CO2 -soluble surfactant,gave the best performance,which could lower the injection and water treatment cost.展开更多
Various surfactants have been used in upstream petroleum processes like chemical flooding. Ultimately, the performance of these surfactants depends on their ability to reduce the interfacial tension between oil and wa...Various surfactants have been used in upstream petroleum processes like chemical flooding. Ultimately, the performance of these surfactants depends on their ability to reduce the interfacial tension between oil and water. The surfactant concentration in the aqueous solution decreases owing to the loss of the surfactant on the rock surface in the injection process. The main objective of this paper is to inhibit the surfactant loss by means of adding nanoparticles. Sodium dodecyl sulfate and silica nanoparticles were used as ionic surfactant and nanoparticles in our experiments, respectively. AEROSIL~? 816 and AEROSIL~?200 are hydrophobic and hydrophilic nanoparticles. To determine the adsorption loss of the surfactant onto rock samples, a conductivity approach was used. Real carbonate rock samples were used as the solid phase in adsorption experiments. It should be noted that the rock samples were water wet. This paper describes how equilibrium adsorption was investigated by examining adsorption behavior in a system of carbonate sample(solid phase) and surfactant solution(aqueous phase). The initial surfactant and nanoparticle concentrations were 500–5000 and 500–2000 ppm, respectively. The rate of surfactant losses was extremely dependent on the concentration of the surfactant in the system, and the adsorption of the surfactant decreased with an increase in the nanoparticle concentration. Also, the hydrophilic nanoparticles are more effective than the hydrophobic nanoparticles.展开更多
Spontaneous imbibition is an important phenomenon in tight reservoirs.The existence of a large number of fractures and micro-nano pores is the key factor affecting the spontaneous imbibition of tight reservoirs.In thi...Spontaneous imbibition is an important phenomenon in tight reservoirs.The existence of a large number of fractures and micro-nano pores is the key factor affecting the spontaneous imbibition of tight reservoirs.In this study,based on high-pressure mercury injection and nuclear magnetic resonance experiments,the pore distribution of tight sandstone is described.The influence of fractures,core porosity and permeability,and surfactants on the spontaneous imbibition of tight sandstone are studied by physical fracturing,interfacial tension test,wettability test and imbibition experiments.The results show that:the pore radius of tight sandstone is concentrated in 0.01-1 mm.Fractures can effectively reduce the oil drop adsorption on the core surface,enhancing the imbibition recovery of the tight sandstone with an increase of about 10%.As the number of fractures increases,the number of oil droplets adsorbed on the core surface decrease and the imbibition rate increases.The imbibition recovery increases with the increase in pore connectivity,while the imbibition rate increases with the increases in core porosity and permeability.The surfactant can improve the core water wettability and reduce the oilwater interfacial tension,reducing the adsorption of oil droplets on the core surface,and improving the core imbibition recovery with an increase of about 15%.In a word,the existence of fractures and surfactants can enhance the pore connectivity of the reservoir,reduce the adsorption of oil droplets on the core surface,and improve the imbibition rate and recovery rate of the tight oil reservoir.展开更多
The synthesis and surface activity of gemini surfactants with ester bond as spacer are described. Their critical micelle concentrations (CMC) are much lower than that of conventional surfactants, i.e., 1.62×10^...The synthesis and surface activity of gemini surfactants with ester bond as spacer are described. Their critical micelle concentrations (CMC) are much lower than that of conventional surfactants, i.e., 1.62×10^-5, 1.38×10^-5, 1.28×10^-5 mol·L^-1 for gemini Ⅰ, Ⅱ and Ⅲ respectively. Surface tension at the CMC of gemini Ⅰ, Ⅱ and Ⅲ were 36.4, 38.5, 41.2 mN · m^-1. The physico-chemical properties such as Krafft points, foaming abilities and emulsifying power were also investigated. It is found that the title compounds have low Krafft points and show good solubility in water. The gemini surfactants synthesized also exhibit good foaming properties and excellent emulsifying power toward toluene. The foaming abilities and emulsifying power increase with the increase in carbon number of hydrophobic chain, and this might be caused by the sheer viscosity of different gemini surfactant solution.展开更多
In recent years,production from tight oil reservoirs has increasingly supplemented production from conventional oil resources.Oil-wet formations account for a considerable proportion of tight oil reservoirs.Surfactant...In recent years,production from tight oil reservoirs has increasingly supplemented production from conventional oil resources.Oil-wet formations account for a considerable proportion of tight oil reservoirs.Surfactant can change wettability and reduce interfacial tension,thus resulting in a better oil recovery.In this manuscript,a nonionic surfactant was introduced for tight oil-wet reservoirs.The oil recovery in the oil-wet sandstone due to spontaneous imbibition was 8.59%lower than that of the waterwet sandstone due to surfactant.The 0.1%surfactant solution corresponded to the highest imbibition recovery rate of 27.02%from the oil-wet sample.With the surfactant treatment,the treated core quickly changed from weakly oil-wet to weakly water-wet.The capillary force acted as the driving force and promoted imbibition.The optimal surfactant adsorption quantity in the oil-wet sandstone was observed in the sample at concentrations ranging from 0.1%to 0.3%,which also corresponded to the highest oil recovery.Analysis of the inverse Bond number NB-1 suggested that the driving force was gravity for brine imbibition in the oil-wet cores and that it was capillary force for surfactant imbibition in the oil-wet cores.When the surfactant concentration was lower than the critical micelle concentration,the surfactant concentration was negatively correlated with the inverse Bond number and positively correlated with the oil recovery rate.When the surfactant concentration was higher than the critical micelle concentration,the oil recovery increased with a smaller interfacial tension.Nuclear magnetic resonance suggested that the movable pore and pore throat size in the oil-wet sample decreased from 0.363 mm in the untreated rock to 0.326 mm with the surfactant treatment,which indicated that the surfactant improved the flow capacity of the oil.The findings of this study can help to better understand the adsorption impact of surfactants on the characteristics of the oil/water and solid/liquid interfaces.The imbibition mechanism in oil-wet tight sandstone reservoirs was further revealed.These systematic approaches help to select appropriate surfactants for better recovery in oil-wet tight sandstone reservoirs through imbibition.展开更多
基金supported by National Natural Science Foundation of China(U21A200313)Key Program of Qingyuan Innovation Laboratory(00221003)‘111’program of Fuzhou University.
文摘Rosin,a renewable and abundant resource,has been extensively processed and chemically modified to endow it with special properties,especially in the surfactant industry.In this study,four rosin-based quaternary ammonium asymmetric gemini surfactants(RGS-2-n)with different alkyl chain lengths(n=12,14,16,18)were synthesized using a simple two-step method based on dehydroabietylamine as the raw material.The feasibility of these surfactants for cleaning purposes was comprehensively evaluated,suggesting that the surfactants own high surface activity and good cleaning performance.Furthermore,by successfully introducing the amine group of dehydroabietylamine into the hydrophilic group of the surfactants,we avoided its potential harm to the environment and water pollution.Density functional theory proves rosin-based gemini surfactants with asymmetric structure can further improve cleaning efficiency.Overall,our findings suggests that RGS-2-n surfactants are promising and sustainable candidates for cleaning electric plates,and provide new opportunities for rosin application in the electric industry.
文摘To investigate the influence of surface characteristics of particles on electrorheological (ER) fluids, water free complex strontium titanate particles were synthesized through the sol gel technique and different mass fraction of the surfactant was doped in particles and dispersed in silicon oil. The test shows that surface characteristics of particles have great influence on the behavior of ER fluids. Surface tension, surface polarity and interfacial polarization are strongly related to the surface status of the dispersed particles.
基金the China National High Technology Research and Development Program (No. 2013AA064301)National Natural Science Foundation of China (No. 51274210) for financial support
文摘In order to improve the enhanced oil recovery of high-temperature and high-salt oilfields, a novel temperature-resistant and salt-tolerant surfactant (denoted as SDB-7) was synthesized and evaluated for the Tahe Oilfield (Xinjiang, China), which is representative of high-temperature and high-salt oilfields. It has a central reservoir temperature of 140 ℃ and salinity of 22.6× 10^4 mg/L. The temperature-resistant and salt-tolerant performance, interfacial activity, oil displacement efficiency, aging properties, and adsorption properties of the synthesized surfactant were evaluated for Tahe Oilfield flooding. The results showed that the SDB-7 was temperature-resistant and salt-tolerant capacity of 140 ℃ and 22.6×10^4 rag/ L, respectively, oil displacement efficiency under static condition of 84%, and adsorption loss of 0.4 mg/ g (less than 1 mg/g-oil sand). In the heat aging experiment (under the temperature of 140 ℃ for 60 days), the oil-water interracial tension and oil displacement efficiency of SDB-7 were almost unchanged. The oil displacement experiments showed that, under the temperature of 140 ℃ and the salinity of 22.6× 10^4 mg/L, the surfactant SDB-7 can enhance oil recovery by 14.5% after water flooding,suggesting that SDB-7 has a promising application in high temperature and high salinity (HT/HS) reservoir.
文摘AIM: To investigate the early expression of surfactant proteins D(SP-D) in Fusarium solani infected rat cornea. METHODS: Wistar rats were divided into group A, B and C randomly. The right eyes were chosen as the experiment one. Group A was control group. Group B was not inoculated with Fusarium solani. Group C was taken as fusarium solani keratitis model. Five rats in group B and C were executed randomly at 6, 12, 24, 48 and 96 hours respectively after the experimental model being established. The expression of SP-D was assessed through immunohistochemistry and reverse transcription polyrnerase chain reaction(RT-PCR). RESULTS: RT-PCR detected that the SP-D mRNA expression was low in the corneal of normal rats and group B. The expression of fungal infected cornea increased gradually and reached the peak at 24 hours in group C. The synchronous expression of group B and C were in significant difference (P<0.01). Immunohistochemisty discovered the protein of SP-D expression was increased gradually from 12 hours and reached the peak at 48 hours in group C. The synchronous expression of group B and C were also in significant difference (P<0.01). CONCLUSION: There exists SP-D in rat corneal tissue and the expression is significantly increased at the early period of fusarium solani infected cornea. SP-D may play a role in the early innate immunity response of the corneal resistance to Fusarium solani infection.
文摘The ability of a novel nonionic CO2 -soluble surfactant to propagate foam in porous media was compared with that of a conventional anionic surfactant(aqueous soluble only)through core floods with Berea sandstone cores.Both simultaneous and alternating injections have been tested.The novel foam outperforms the conventional one with respect to faster foam propagation and higher desaturation rate.Furthermore,the novel injection strategy,CO2 continuous injection with dissolved CO2 -soluble surfactant,has been tested in the laboratory.Strong foam presented without delay.It is the first time the measured surfactant properties have been used to model foam transport on a field scale to extend our findings with the presence of gravity segregation.Different injection strategies have been tested under both constant rate and pressure constraints.It was showed that novel foam outperforms the conventional one in every scenario with much higher sweep efficiency and injectivity as well as more even pressure redistribution.Also,for this novel foam,it is not necessary that constant pressure injection is better,which has been concluded in previous literature for conventional foam.Furthermore,the novel injection strategy,CO2 continuous injection with dissolved CO2 -soluble surfactant,gave the best performance,which could lower the injection and water treatment cost.
文摘Various surfactants have been used in upstream petroleum processes like chemical flooding. Ultimately, the performance of these surfactants depends on their ability to reduce the interfacial tension between oil and water. The surfactant concentration in the aqueous solution decreases owing to the loss of the surfactant on the rock surface in the injection process. The main objective of this paper is to inhibit the surfactant loss by means of adding nanoparticles. Sodium dodecyl sulfate and silica nanoparticles were used as ionic surfactant and nanoparticles in our experiments, respectively. AEROSIL~? 816 and AEROSIL~?200 are hydrophobic and hydrophilic nanoparticles. To determine the adsorption loss of the surfactant onto rock samples, a conductivity approach was used. Real carbonate rock samples were used as the solid phase in adsorption experiments. It should be noted that the rock samples were water wet. This paper describes how equilibrium adsorption was investigated by examining adsorption behavior in a system of carbonate sample(solid phase) and surfactant solution(aqueous phase). The initial surfactant and nanoparticle concentrations were 500–5000 and 500–2000 ppm, respectively. The rate of surfactant losses was extremely dependent on the concentration of the surfactant in the system, and the adsorption of the surfactant decreased with an increase in the nanoparticle concentration. Also, the hydrophilic nanoparticles are more effective than the hydrophobic nanoparticles.
基金This work was supported by the National Natural Science Foundation of China(No.51874320).
文摘Spontaneous imbibition is an important phenomenon in tight reservoirs.The existence of a large number of fractures and micro-nano pores is the key factor affecting the spontaneous imbibition of tight reservoirs.In this study,based on high-pressure mercury injection and nuclear magnetic resonance experiments,the pore distribution of tight sandstone is described.The influence of fractures,core porosity and permeability,and surfactants on the spontaneous imbibition of tight sandstone are studied by physical fracturing,interfacial tension test,wettability test and imbibition experiments.The results show that:the pore radius of tight sandstone is concentrated in 0.01-1 mm.Fractures can effectively reduce the oil drop adsorption on the core surface,enhancing the imbibition recovery of the tight sandstone with an increase of about 10%.As the number of fractures increases,the number of oil droplets adsorbed on the core surface decrease and the imbibition rate increases.The imbibition recovery increases with the increase in pore connectivity,while the imbibition rate increases with the increases in core porosity and permeability.The surfactant can improve the core water wettability and reduce the oilwater interfacial tension,reducing the adsorption of oil droplets on the core surface,and improving the core imbibition recovery with an increase of about 15%.In a word,the existence of fractures and surfactants can enhance the pore connectivity of the reservoir,reduce the adsorption of oil droplets on the core surface,and improve the imbibition rate and recovery rate of the tight oil reservoir.
基金the Natural Science Foundation of Hubei Province, China (2000J023)
文摘The synthesis and surface activity of gemini surfactants with ester bond as spacer are described. Their critical micelle concentrations (CMC) are much lower than that of conventional surfactants, i.e., 1.62×10^-5, 1.38×10^-5, 1.28×10^-5 mol·L^-1 for gemini Ⅰ, Ⅱ and Ⅲ respectively. Surface tension at the CMC of gemini Ⅰ, Ⅱ and Ⅲ were 36.4, 38.5, 41.2 mN · m^-1. The physico-chemical properties such as Krafft points, foaming abilities and emulsifying power were also investigated. It is found that the title compounds have low Krafft points and show good solubility in water. The gemini surfactants synthesized also exhibit good foaming properties and excellent emulsifying power toward toluene. The foaming abilities and emulsifying power increase with the increase in carbon number of hydrophobic chain, and this might be caused by the sheer viscosity of different gemini surfactant solution.
基金financially supported by the National Key R&D Program of China(No.2019YFA0708700)National Science Fund of China(No.51804327,51834010)+1 种基金Climb Taishan Scholar Program in Shandong Province(No.tspd20161004)the Fundamental Research Funds for the Central Universities(No.18CX02026A,24720182026A)。
文摘In recent years,production from tight oil reservoirs has increasingly supplemented production from conventional oil resources.Oil-wet formations account for a considerable proportion of tight oil reservoirs.Surfactant can change wettability and reduce interfacial tension,thus resulting in a better oil recovery.In this manuscript,a nonionic surfactant was introduced for tight oil-wet reservoirs.The oil recovery in the oil-wet sandstone due to spontaneous imbibition was 8.59%lower than that of the waterwet sandstone due to surfactant.The 0.1%surfactant solution corresponded to the highest imbibition recovery rate of 27.02%from the oil-wet sample.With the surfactant treatment,the treated core quickly changed from weakly oil-wet to weakly water-wet.The capillary force acted as the driving force and promoted imbibition.The optimal surfactant adsorption quantity in the oil-wet sandstone was observed in the sample at concentrations ranging from 0.1%to 0.3%,which also corresponded to the highest oil recovery.Analysis of the inverse Bond number NB-1 suggested that the driving force was gravity for brine imbibition in the oil-wet cores and that it was capillary force for surfactant imbibition in the oil-wet cores.When the surfactant concentration was lower than the critical micelle concentration,the surfactant concentration was negatively correlated with the inverse Bond number and positively correlated with the oil recovery rate.When the surfactant concentration was higher than the critical micelle concentration,the oil recovery increased with a smaller interfacial tension.Nuclear magnetic resonance suggested that the movable pore and pore throat size in the oil-wet sample decreased from 0.363 mm in the untreated rock to 0.326 mm with the surfactant treatment,which indicated that the surfactant improved the flow capacity of the oil.The findings of this study can help to better understand the adsorption impact of surfactants on the characteristics of the oil/water and solid/liquid interfaces.The imbibition mechanism in oil-wet tight sandstone reservoirs was further revealed.These systematic approaches help to select appropriate surfactants for better recovery in oil-wet tight sandstone reservoirs through imbibition.