Orthogonal-test-design method has been used to determine the optimal formula by phase behavior and interfacial tension studies, respectively. The effect of each component of two alkaline/surfactant/polymer flooding sy...Orthogonal-test-design method has been used to determine the optimal formula by phase behavior and interfacial tension studies, respectively. The effect of each component of two alkaline/surfactant/polymer flooding systems on interfacial tension is discussed, in which a low-price natural mixed carboxylate (SDC) is used as the major surfactant. The results indicate that the optimal composition is SDC (0.5%), alkaline NaHCO3/Na2CO3 with mass ratio of 1 (1.0%), and hydrolyzed polyacrylamide(0.1%). In the coreflood experiment, their oil recovery is increased by about 25.2% and 26.8% original oil in place, respectively.展开更多
Petroleum carboxylate that may be suitable for tertiary oil recovery have been produced inexpensively from the fractions of Daqing crude oil by a two step process.The feed stock was first oxidized in the vapor phase,f...Petroleum carboxylate that may be suitable for tertiary oil recovery have been produced inexpensively from the fractions of Daqing crude oil by a two step process.The feed stock was first oxidized in the vapor phase,followed by reaction of the oxidized products with sodium hydroxide.Dilute solutions of sodium carboxylates were produced and show ultralow(10^(-2)mN/m)interfacial tensions(IFTs)against a variety of hydrocarbons with a wide range of ACN(Alkane Carbon Number).Infrared spectroscopy was used to identify the functional groups in the oxidized and the saponified products.展开更多
Research on the Gangxi III area in the Dagang Oilfield shows that there was still a significant amount of oil remaining in oil reservoirs after many years of polymer flooding.This is a potential target for enhanced oi...Research on the Gangxi III area in the Dagang Oilfield shows that there was still a significant amount of oil remaining in oil reservoirs after many years of polymer flooding.This is a potential target for enhanced oil recovery(EOR).Surfactant–polymer(SP) flooding is an effective chemical EOR method for mobilizing residual oil and improving displacement efficiency macroscopically,but the microscopic oil displacement efficiency in pores of different sizes is unclear.Nuclear magnetic resonance(NMR) is an efficient method for quantifying oil saturation in the rock matrix and analyzing pore structures.In this paper,the threshold values of different pore sizes were established from the relationship between mercury injection curves and NMR T2 spectrums.The distribution and migration of residual oil in different flooding processes was evaluated by quantitatively analyzing the change of the relaxation time.The oil displaced from pores of different sizes after the water flood,polymer flood,and the SP flood was calculated,respectively.Experimental results indicate that(1) the residual oil in medium pores contributed the most to the incremental oil recovery for the SP flood,ranging from 40 % to 49 %,and small pores usually contributed /30 %;(2) the residual oil after the SP flood was mainly distributed in small and medium pores;the residual oil in medium pores accounted for 47.3 %–54.7 %,while that trapped in small pores was 25.7 %–42.5 %.The residual oil in small and medium pores was the main target for EOR after the SP flood in oilfields.展开更多
Surfactants for enhanced oil recovery are important to study due to their special characteristics like foam generation,lowering interfacial tension between oleic and aqueous phases,and wettability alteration of reserv...Surfactants for enhanced oil recovery are important to study due to their special characteristics like foam generation,lowering interfacial tension between oleic and aqueous phases,and wettability alteration of reservoir rock surfaces.Foam is a good mobility control agent in enhanced oil recovery for improving the mobility ratio.In the present work,the foaming behavior of three nonionic ethoxylated surfactants,namely Tergitol 15-S-7,Tergitol 15-S-9,and Tergitol 15-S-12,was studied experimentally.Among the surfactants,Tergitol 15-S-12 shows the highest foamability.The effect of Na Cl concentration and synthetic seawater on foaming behavior of the surfactants was investigated by the test-tube shaking method.The critical micelle concentrations of aqueous solutions of the different nonionic surfactants were measured at 300 K.It was found that the critical micelle concentrations of all surfactants also increased with increasing ethylene oxide number.Dynamic light scattering experiments were performed to investigate the micelle sizes of the surfactants at their respective critical micelle concentrations.Core flooding experiments were carried out in sand packs using the surfactant solutions.It was found tha t22% additional oil was recovered in the case of all the surfactants over secondary water flooding.Tergitol 15-S-12exhibited the maximum additional oil recovery which is more than 26%after water injection.展开更多
Surfactant-based oil recovery processes are employed to lower the interfacial tension in immiscible displacement processes,change the wettability of rock to a more water-wet system and emulsify the oil to displace it ...Surfactant-based oil recovery processes are employed to lower the interfacial tension in immiscible displacement processes,change the wettability of rock to a more water-wet system and emulsify the oil to displace it in subsurface porous media.Furthermore,these phenomena can reduce the capillary pressure and enhance spontaneous imbibition.The key factors affecting such immiscible displacement process are temperature,salinity and p H of the fluids,surfactant concentration and adsorption.Therefore,before any surfactant flooding process is applied,extensive studies of fluid-fluid and rock-fluid interactions are needed.The use of other chemicals along with surfactants in chemical enhanced oil recovery(c EOR)processes have been widely considered to exploit the synergy of individual chemicals and complement the weakness arises from each of them during immiscible displacement of fluids in porous media.Therefore,such combinations of chemicals lead to alkaline-surfactant(AS),surfactantpolymer(SP),alkaline-surfactant-polymer(ASP),and nanoparticle-surfactant(NS)flooding processes,among others.In this review study,we categorised the role and displacement mechanisms of surfactants and discussed the key factors to be considered for analysing the fluid displacement in porous media.展开更多
Reducing the oil-water interfacial tension(IFT)to ultra-low is believed the primary mechanism for surfactant-based enhanced oil recovery(EOR)process.However,field trials have shown that low concentration surfactant fl...Reducing the oil-water interfacial tension(IFT)to ultra-low is believed the primary mechanism for surfactant-based enhanced oil recovery(EOR)process.However,field trials have shown that low concentration surfactant flooding can also improve oil recovery without ultra-low IFT.To clarify the mechanism behind,the currently-used surfactant,naphthenic arylsulfonate(NAS),was used to unravel its function during surfactant flooding from the horizon of micron-and nano-scale.The solubilization capacity of NAS micelle to petroleum fractions was evaluated through light absorbance strategy,smallangle neutron scattering,dynamic light scattering and transmission electron microscopy.It was found that micellar solubilization plays a significant role during the surfactant flooding.In-situ emulsification was visualized in microfluidics with three types of microchips,respectively.A series of displacement tests were carried out with NAS solution pumping into oil-saturated chip.The results show that in-situ emulsification improve oil recovery mainly through blocking and entrainment effects.Results from this work aid in understanding the interaction between surfactant solution and petroleum fractions at low surfactant concentration,which is helpful for design surfactant-based displacing system for EOR process.展开更多
This article is aimed to discuss the impact of using two different kinds of surfactant in enhancing oil recovery in heterogeneous reservoirs. With the background of Jidong oilfield, Rui Feng surfactant which could rea...This article is aimed to discuss the impact of using two different kinds of surfactant in enhancing oil recovery in heterogeneous reservoirs. With the background of Jidong oilfield, Rui Feng surfactant which could reach ultra-low interracial tension and combination surfactant RZ-JD80 with strong emulsifying property are chosen to do oil displacement and profile control-oil displacement experiment in homogeneous core and heterogeneous core respectively. The experiment is aimed to study the effect of oil displacement by injecting surfactant individually and the effect after injecting different profile control agent slug before surfactant flooding in heterogeneous cores. The results suggest that injecting Rui Feng surfactant and RZ-JD80 individually could enhance the oil displacement efficiency about 15 percentage points for homogeneous core. For strongly heterogeneous core, it is low efficiency by using either of these two surfactants individually. However, if injected a very little profile control agent slug before surfactant flooding, both of these two kinds of surfactant could enhance the oil recovery by different degree, especially, polymer microsphere plugging^RZ-JD80 flooding composite technology is more adaptable to Gao-63 reservoir. This technology could increase the recovery by 18.52 percentage points aRer surfactant flooding.展开更多
Combining low salinity water (LSW) with surfactants has an enormous potential for enhancing oil recovery processes. However, there is no consensus about the mechanisms involved, in addition to the fact that several st...Combining low salinity water (LSW) with surfactants has an enormous potential for enhancing oil recovery processes. However, there is no consensus about the mechanisms involved, in addition to the fact that several studies have been conducted in model systems, while experiments with rocks and reservoir fluids are scarce. This study presents a core-flooding experiment of LSW injection, with and without surfactant, using the core and heavy oil samples obtained from a sandstone reservoir in southeastern Mexico. The effluents and the crude oil obtained at each stage were analyzed. The study was complemented by tomographic analysis. The results revealed that LSW injection and hybrid process with surfactants obtained an increase of 11.4 percentage points in recovery factor. Various phenomena were caused by LSW flooding, such as changes in wettability and pH, ion exchange, mineral dissolution, detachment of fines and modification of the hydrocarbon profile. In the surfactant flooding, the reduction of interfacial tension and alteration of wettability were the main mechanisms involved. The findings of this work also showed that the conditions believed to be necessary for enhanced oil recovery with LSW, such as the presence of kaolinite or high acid number oil, are not relevant.展开更多
Sandstone reservoirs often contain clay particles that can cause damage and reduce permeability during low-salinity water flooding.In this study,the effect of surfactants on fine migration in clay-rich sandstones and ...Sandstone reservoirs often contain clay particles that can cause damage and reduce permeability during low-salinity water flooding.In this study,the effect of surfactants on fine migration in clay-rich sandstones and its impact on oil recovery was investigated.First,the impact of surfactants on interparticle forces in fine-matrix,fine-fine,and oil-matrix systems was modeled.The results showed that both CTAB(cetyltrimethyl ammonium bromide)and QS(quillaja saponin)cause EDL compaction,weakening the repulsive forces.However,SDS(sodium dodecyl sulfate)and TX(triton X-100)do not affect the EDL.Next,the effect of surfactants on IFT reduction and wettability alteration was experimentally investigated.All surfactants reduced IFT due to the surface excessive concentration mechanism.The wettability alteration experiment illustrated that although QS and CTAB compact EDL around oil and matrix particles leading to attraction force augmentation,they both alter wettability through adsorption on matrix and carboxylic groups present in crude oil,respectively.Surfactant aqueous solutions were then injected into various clay-rich sandstone sanpacks,which resulted in increased oil recovery.However,the mechanisms leading to enhanced oil recovery variedby surfactant type.CTAB increased recovery by 10%through IFT reduction and wettability alteration,while SDS and TX increased recovery by 12%and 9%,respectively,through wettability alteration and extreme fine migration.In contrast,partial fine migration in the QS flooding experiment reached a recovery increase of 18%.Permeability trends through experiments were also recorded.During CTAB injection,permeability did not reduce,while QS aqueous solution reduced rock permeability to 5 m D.SDS and TX reduced the magnitude of permeability to 2 m D.In conclusion,this study demonstrates that surfactants can effectively improve oil recovery in clay-rich sandstones by altering the interparticle forces,reducing IFT,and changing wettability.The results suggest that the type of surfactant used should be carefully selected to achieve the desired recovery increase without affecting the permeability of the reservoir.展开更多
Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploi...Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed.展开更多
The remained oil in the reservoir after conventional water-flooding processes,forms a dispersed phase in the form of oil drops which is trapped by capillary forces and is almost about 70%of the original oil in the pla...The remained oil in the reservoir after conventional water-flooding processes,forms a dispersed phase in the form of oil drops which is trapped by capillary forces and is almost about 70%of the original oil in the place(OOIP).To reduce oil residual saturation in laboratory experiments and field projects,surfactant flooding is effective via decreasing the interfacial tension mobility ratio between oil and water phases.Estimation of the role of design variables,like chemical concentrations,partition coefficient and injection rate in different performance quantities,considering a heterogeneous and multiphase oil reservoir is a critical stage for optimal design.Increasing demand for oil production from water-flooded reservoirs has caused an increasing interest in surfactant-polymer(SP)and alkali-surfactant-polymer(ASP).Modeling minimizes the risk of high cost of chemicals by improving our insight of process.In the present paper,a surfactant compositional flood model for a three-component(water,petroleum and surfactant),two phase(aqueous and oleic)system is studied.A homogeneous,two-dimensional,isothermal reservoir with no free gas or alkali is assumed.The governing equations are in three categories:the continuity equations for the transport of each component,Darcy's equation for the transport of each phase and other auxiliary equations.The equations are solved by finite-differences using a procedure implicit in pressure and explicit in saturation.The validation of the model is achieved through comparing the modeling results with CMG simulators and BuckleyeLeverett theory.The results of modeling showed good agreement with CMG results,and the comparison with BuckleyeLeverett theory is explained according to different assumptions.After validation of the model,in order to investigate sensitivity analysis,the effects of system variables(partition coefficient,surface tension,oil viscosity and surface injection concentration)and performance variable(cumulative oil recovery)are studied.Finally,the comparison of oil recovery between water-flooding and surfactant-flooding was done.The results showed higher oil recovery with changes in capillary number when the partition coefficient is greater than unity.Increasing oil viscosity resulted in decreasing the oil recovery by changing in fractional flow.Moreover,it was concluded that the oil recovery was enhanced by increasing surfactant injection concentration.The oil recovery was increased when surfactant was injected to the system and this result was obtained by comparing water-flooding and surfactantflooding.展开更多
India is currently producing crude oil from matured fields because of insufficient discoveries of new fields.Therefore,in order to control the energy crisis in India,enhanced oil recovery(EOR)techniques are required t...India is currently producing crude oil from matured fields because of insufficient discoveries of new fields.Therefore,in order to control the energy crisis in India,enhanced oil recovery(EOR)techniques are required to reduce the import of crude from the OPEC(Organization of the Petroleum Exporting Countries).This review mentions chemical EOR techniques(polymers,surfactants,alkali,nanoparticles,and combined alkali-surfactant-polymer flooding)and operations in India.Chemical EOR methods are one of the most efficient methods for oil displacement.The efficiency is enhanced by interfacial tension(IFT)reduction using surfactants and alkali,and mobility control of injected water is done by adding a polymer to increase the volumetric sweep efficiency.This paper also reviews the current trend of chemical EOR,prospects of chemical EOR in Indian oilfields,the development of chemical EOR in India with their challenges raising with economics,and screening criteria for chemical EOR implementation on the field scale.Furthermore,the review gives a brief idea about chemical EOR implementation in Indian oilfields in future prospects to increase the additional oil recovery from existing depleted fields to reduce the import of crude oil.The outcome of this review depicts all chemical EOR operations and recovery rates both at the laboratory scale and field scale around the country.The additional recovery rates are compared from various chemical EOR methods like conventional chemical flooding methods and conventional chemicals combined with nanoparticles on a laboratory scale.The development of chemical EOR in the past few decades and the EOR policy given by the government of India has been mentioned in this review.The analysis provides an idea about enhanced recovery screening and implementation of chemical EOR methods in existing fields will significantly reduce the energy crisis in India.展开更多
Surfactant enhanced oil recovery(EOR)includes surfactant flooding and surfactant stimulation.The main functions of surfactants are to reduce interfacial tension and wettability alteration.This paper is to review the E...Surfactant enhanced oil recovery(EOR)includes surfactant flooding and surfactant stimulation.The main functions of surfactants are to reduce interfacial tension and wettability alteration.This paper is to review the EOR technology related to surfactant injection.The reviewed topics include the following:Surfactant EOR mechanismsFactors affecting interfacial tension Trapping numberScreening criteriaLaboratory work Numerical simulation work Summary of pilot and large-scale applications Surfactants used Salinity gradientSurfactant EOR in carbonate reservoirs Surfactant EOR in shale reservoirs.展开更多
It is preliminary estimated that the proved geological reserves of original low-oil-saturation reservoirs(OLOSRs)of 54 blocks in China are more than 820 million tons.As same as the high water-cut stage of a reservoir ...It is preliminary estimated that the proved geological reserves of original low-oil-saturation reservoirs(OLOSRs)of 54 blocks in China are more than 820 million tons.As same as the high water-cut stage of a reservoir after water flooding,the initial water cut of OLOSRS is higher than 80%.The industrial application of EOR technology could efficiently enhance oil recovery rate from 8.4% to 20.1% of reservoirs after water flooding.The suitable measurements of EOR to the OLOSRs probably have a profound impact on achieving higher oilfield reserves and production.In this paper,the main characteristics and reserves potential of OLOSRs have been studied by investigations and laboratory experiments.The relationship between initial oil saturation and displacement efficiency is also analyzed.The feasibility of EOR technologies for different OLOSRs is discussed.The results show that the OLOSRs could be divided into two categories(primary and secondary)by origin of low oil saturation.The two categories contain abundant reserves in China’s major oilfields,but their occurrence states of crude oil are quite different.If the average oil saturation of the OLOSR is defined at 40%,there are 13.1%-54.2%crude oil that could be recovered by using the existing EOR technology,especially in the primary OLOSRs with low permeability and the secondary OLOSRs with high permeability.展开更多
文摘Orthogonal-test-design method has been used to determine the optimal formula by phase behavior and interfacial tension studies, respectively. The effect of each component of two alkaline/surfactant/polymer flooding systems on interfacial tension is discussed, in which a low-price natural mixed carboxylate (SDC) is used as the major surfactant. The results indicate that the optimal composition is SDC (0.5%), alkaline NaHCO3/Na2CO3 with mass ratio of 1 (1.0%), and hydrolyzed polyacrylamide(0.1%). In the coreflood experiment, their oil recovery is increased by about 25.2% and 26.8% original oil in place, respectively.
文摘Petroleum carboxylate that may be suitable for tertiary oil recovery have been produced inexpensively from the fractions of Daqing crude oil by a two step process.The feed stock was first oxidized in the vapor phase,followed by reaction of the oxidized products with sodium hydroxide.Dilute solutions of sodium carboxylates were produced and show ultralow(10^(-2)mN/m)interfacial tensions(IFTs)against a variety of hydrocarbons with a wide range of ACN(Alkane Carbon Number).Infrared spectroscopy was used to identify the functional groups in the oxidized and the saponified products.
基金Scientific Research Foundation of China University of Petroleum,Beijing (No.2462013YJRC033) and (No.01JB0177)
文摘Research on the Gangxi III area in the Dagang Oilfield shows that there was still a significant amount of oil remaining in oil reservoirs after many years of polymer flooding.This is a potential target for enhanced oil recovery(EOR).Surfactant–polymer(SP) flooding is an effective chemical EOR method for mobilizing residual oil and improving displacement efficiency macroscopically,but the microscopic oil displacement efficiency in pores of different sizes is unclear.Nuclear magnetic resonance(NMR) is an efficient method for quantifying oil saturation in the rock matrix and analyzing pore structures.In this paper,the threshold values of different pore sizes were established from the relationship between mercury injection curves and NMR T2 spectrums.The distribution and migration of residual oil in different flooding processes was evaluated by quantitatively analyzing the change of the relaxation time.The oil displaced from pores of different sizes after the water flood,polymer flood,and the SP flood was calculated,respectively.Experimental results indicate that(1) the residual oil in medium pores contributed the most to the incremental oil recovery for the SP flood,ranging from 40 % to 49 %,and small pores usually contributed /30 %;(2) the residual oil after the SP flood was mainly distributed in small and medium pores;the residual oil in medium pores accounted for 47.3 %–54.7 %,while that trapped in small pores was 25.7 %–42.5 %.The residual oil in small and medium pores was the main target for EOR after the SP flood in oilfields.
基金the financial support provided by Council for Scientific and Industrial Research [22(0649)/13/EMR-II], New Delhi, to the Department of Petroleum Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
文摘Surfactants for enhanced oil recovery are important to study due to their special characteristics like foam generation,lowering interfacial tension between oleic and aqueous phases,and wettability alteration of reservoir rock surfaces.Foam is a good mobility control agent in enhanced oil recovery for improving the mobility ratio.In the present work,the foaming behavior of three nonionic ethoxylated surfactants,namely Tergitol 15-S-7,Tergitol 15-S-9,and Tergitol 15-S-12,was studied experimentally.Among the surfactants,Tergitol 15-S-12 shows the highest foamability.The effect of Na Cl concentration and synthetic seawater on foaming behavior of the surfactants was investigated by the test-tube shaking method.The critical micelle concentrations of aqueous solutions of the different nonionic surfactants were measured at 300 K.It was found that the critical micelle concentrations of all surfactants also increased with increasing ethylene oxide number.Dynamic light scattering experiments were performed to investigate the micelle sizes of the surfactants at their respective critical micelle concentrations.Core flooding experiments were carried out in sand packs using the surfactant solutions.It was found tha t22% additional oil was recovered in the case of all the surfactants over secondary water flooding.Tergitol 15-S-12exhibited the maximum additional oil recovery which is more than 26%after water injection.
基金the Faculty of Engineering University of Khartoum,Sudan,for the financial support of his studies at the University of Aberdeen
文摘Surfactant-based oil recovery processes are employed to lower the interfacial tension in immiscible displacement processes,change the wettability of rock to a more water-wet system and emulsify the oil to displace it in subsurface porous media.Furthermore,these phenomena can reduce the capillary pressure and enhance spontaneous imbibition.The key factors affecting such immiscible displacement process are temperature,salinity and p H of the fluids,surfactant concentration and adsorption.Therefore,before any surfactant flooding process is applied,extensive studies of fluid-fluid and rock-fluid interactions are needed.The use of other chemicals along with surfactants in chemical enhanced oil recovery(c EOR)processes have been widely considered to exploit the synergy of individual chemicals and complement the weakness arises from each of them during immiscible displacement of fluids in porous media.Therefore,such combinations of chemicals lead to alkaline-surfactant(AS),surfactantpolymer(SP),alkaline-surfactant-polymer(ASP),and nanoparticle-surfactant(NS)flooding processes,among others.In this review study,we categorised the role and displacement mechanisms of surfactants and discussed the key factors to be considered for analysing the fluid displacement in porous media.
基金Natural Science Foundation of China for its financial support(grant number:U1762218)
文摘Reducing the oil-water interfacial tension(IFT)to ultra-low is believed the primary mechanism for surfactant-based enhanced oil recovery(EOR)process.However,field trials have shown that low concentration surfactant flooding can also improve oil recovery without ultra-low IFT.To clarify the mechanism behind,the currently-used surfactant,naphthenic arylsulfonate(NAS),was used to unravel its function during surfactant flooding from the horizon of micron-and nano-scale.The solubilization capacity of NAS micelle to petroleum fractions was evaluated through light absorbance strategy,smallangle neutron scattering,dynamic light scattering and transmission electron microscopy.It was found that micellar solubilization plays a significant role during the surfactant flooding.In-situ emulsification was visualized in microfluidics with three types of microchips,respectively.A series of displacement tests were carried out with NAS solution pumping into oil-saturated chip.The results show that in-situ emulsification improve oil recovery mainly through blocking and entrainment effects.Results from this work aid in understanding the interaction between surfactant solution and petroleum fractions at low surfactant concentration,which is helpful for design surfactant-based displacing system for EOR process.
文摘This article is aimed to discuss the impact of using two different kinds of surfactant in enhancing oil recovery in heterogeneous reservoirs. With the background of Jidong oilfield, Rui Feng surfactant which could reach ultra-low interracial tension and combination surfactant RZ-JD80 with strong emulsifying property are chosen to do oil displacement and profile control-oil displacement experiment in homogeneous core and heterogeneous core respectively. The experiment is aimed to study the effect of oil displacement by injecting surfactant individually and the effect after injecting different profile control agent slug before surfactant flooding in heterogeneous cores. The results suggest that injecting Rui Feng surfactant and RZ-JD80 individually could enhance the oil displacement efficiency about 15 percentage points for homogeneous core. For strongly heterogeneous core, it is low efficiency by using either of these two surfactants individually. However, if injected a very little profile control agent slug before surfactant flooding, both of these two kinds of surfactant could enhance the oil recovery by different degree, especially, polymer microsphere plugging^RZ-JD80 flooding composite technology is more adaptable to Gao-63 reservoir. This technology could increase the recovery by 18.52 percentage points aRer surfactant flooding.
文摘Combining low salinity water (LSW) with surfactants has an enormous potential for enhancing oil recovery processes. However, there is no consensus about the mechanisms involved, in addition to the fact that several studies have been conducted in model systems, while experiments with rocks and reservoir fluids are scarce. This study presents a core-flooding experiment of LSW injection, with and without surfactant, using the core and heavy oil samples obtained from a sandstone reservoir in southeastern Mexico. The effluents and the crude oil obtained at each stage were analyzed. The study was complemented by tomographic analysis. The results revealed that LSW injection and hybrid process with surfactants obtained an increase of 11.4 percentage points in recovery factor. Various phenomena were caused by LSW flooding, such as changes in wettability and pH, ion exchange, mineral dissolution, detachment of fines and modification of the hydrocarbon profile. In the surfactant flooding, the reduction of interfacial tension and alteration of wettability were the main mechanisms involved. The findings of this work also showed that the conditions believed to be necessary for enhanced oil recovery with LSW, such as the presence of kaolinite or high acid number oil, are not relevant.
文摘Sandstone reservoirs often contain clay particles that can cause damage and reduce permeability during low-salinity water flooding.In this study,the effect of surfactants on fine migration in clay-rich sandstones and its impact on oil recovery was investigated.First,the impact of surfactants on interparticle forces in fine-matrix,fine-fine,and oil-matrix systems was modeled.The results showed that both CTAB(cetyltrimethyl ammonium bromide)and QS(quillaja saponin)cause EDL compaction,weakening the repulsive forces.However,SDS(sodium dodecyl sulfate)and TX(triton X-100)do not affect the EDL.Next,the effect of surfactants on IFT reduction and wettability alteration was experimentally investigated.All surfactants reduced IFT due to the surface excessive concentration mechanism.The wettability alteration experiment illustrated that although QS and CTAB compact EDL around oil and matrix particles leading to attraction force augmentation,they both alter wettability through adsorption on matrix and carboxylic groups present in crude oil,respectively.Surfactant aqueous solutions were then injected into various clay-rich sandstone sanpacks,which resulted in increased oil recovery.However,the mechanisms leading to enhanced oil recovery variedby surfactant type.CTAB increased recovery by 10%through IFT reduction and wettability alteration,while SDS and TX increased recovery by 12%and 9%,respectively,through wettability alteration and extreme fine migration.In contrast,partial fine migration in the QS flooding experiment reached a recovery increase of 18%.Permeability trends through experiments were also recorded.During CTAB injection,permeability did not reduce,while QS aqueous solution reduced rock permeability to 5 m D.SDS and TX reduced the magnitude of permeability to 2 m D.In conclusion,this study demonstrates that surfactants can effectively improve oil recovery in clay-rich sandstones by altering the interparticle forces,reducing IFT,and changing wettability.The results suggest that the type of surfactant used should be carefully selected to achieve the desired recovery increase without affecting the permeability of the reservoir.
基金supported by Key Program of National Natural Science Foundation of China (No. 52130401)National Natural Science Foundation of China (No. 52104055)+1 种基金China National Postdoctoral Program for Innovative Talents (No. BX20200386)China Postdoctoral Science Foundation (No. 2021M703586)。
文摘Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed.
文摘The remained oil in the reservoir after conventional water-flooding processes,forms a dispersed phase in the form of oil drops which is trapped by capillary forces and is almost about 70%of the original oil in the place(OOIP).To reduce oil residual saturation in laboratory experiments and field projects,surfactant flooding is effective via decreasing the interfacial tension mobility ratio between oil and water phases.Estimation of the role of design variables,like chemical concentrations,partition coefficient and injection rate in different performance quantities,considering a heterogeneous and multiphase oil reservoir is a critical stage for optimal design.Increasing demand for oil production from water-flooded reservoirs has caused an increasing interest in surfactant-polymer(SP)and alkali-surfactant-polymer(ASP).Modeling minimizes the risk of high cost of chemicals by improving our insight of process.In the present paper,a surfactant compositional flood model for a three-component(water,petroleum and surfactant),two phase(aqueous and oleic)system is studied.A homogeneous,two-dimensional,isothermal reservoir with no free gas or alkali is assumed.The governing equations are in three categories:the continuity equations for the transport of each component,Darcy's equation for the transport of each phase and other auxiliary equations.The equations are solved by finite-differences using a procedure implicit in pressure and explicit in saturation.The validation of the model is achieved through comparing the modeling results with CMG simulators and BuckleyeLeverett theory.The results of modeling showed good agreement with CMG results,and the comparison with BuckleyeLeverett theory is explained according to different assumptions.After validation of the model,in order to investigate sensitivity analysis,the effects of system variables(partition coefficient,surface tension,oil viscosity and surface injection concentration)and performance variable(cumulative oil recovery)are studied.Finally,the comparison of oil recovery between water-flooding and surfactant-flooding was done.The results showed higher oil recovery with changes in capillary number when the partition coefficient is greater than unity.Increasing oil viscosity resulted in decreasing the oil recovery by changing in fractional flow.Moreover,it was concluded that the oil recovery was enhanced by increasing surfactant injection concentration.The oil recovery was increased when surfactant was injected to the system and this result was obtained by comparing water-flooding and surfactantflooding.
文摘India is currently producing crude oil from matured fields because of insufficient discoveries of new fields.Therefore,in order to control the energy crisis in India,enhanced oil recovery(EOR)techniques are required to reduce the import of crude from the OPEC(Organization of the Petroleum Exporting Countries).This review mentions chemical EOR techniques(polymers,surfactants,alkali,nanoparticles,and combined alkali-surfactant-polymer flooding)and operations in India.Chemical EOR methods are one of the most efficient methods for oil displacement.The efficiency is enhanced by interfacial tension(IFT)reduction using surfactants and alkali,and mobility control of injected water is done by adding a polymer to increase the volumetric sweep efficiency.This paper also reviews the current trend of chemical EOR,prospects of chemical EOR in Indian oilfields,the development of chemical EOR in India with their challenges raising with economics,and screening criteria for chemical EOR implementation on the field scale.Furthermore,the review gives a brief idea about chemical EOR implementation in Indian oilfields in future prospects to increase the additional oil recovery from existing depleted fields to reduce the import of crude oil.The outcome of this review depicts all chemical EOR operations and recovery rates both at the laboratory scale and field scale around the country.The additional recovery rates are compared from various chemical EOR methods like conventional chemical flooding methods and conventional chemicals combined with nanoparticles on a laboratory scale.The development of chemical EOR in the past few decades and the EOR policy given by the government of India has been mentioned in this review.The analysis provides an idea about enhanced recovery screening and implementation of chemical EOR methods in existing fields will significantly reduce the energy crisis in India.
文摘Surfactant enhanced oil recovery(EOR)includes surfactant flooding and surfactant stimulation.The main functions of surfactants are to reduce interfacial tension and wettability alteration.This paper is to review the EOR technology related to surfactant injection.The reviewed topics include the following:Surfactant EOR mechanismsFactors affecting interfacial tension Trapping numberScreening criteriaLaboratory work Numerical simulation work Summary of pilot and large-scale applications Surfactants used Salinity gradientSurfactant EOR in carbonate reservoirs Surfactant EOR in shale reservoirs.
基金supported by the CNPC program of New Technologies and Methods for Oil and Gas Field Development(2016A-0903).
文摘It is preliminary estimated that the proved geological reserves of original low-oil-saturation reservoirs(OLOSRs)of 54 blocks in China are more than 820 million tons.As same as the high water-cut stage of a reservoir after water flooding,the initial water cut of OLOSRS is higher than 80%.The industrial application of EOR technology could efficiently enhance oil recovery rate from 8.4% to 20.1% of reservoirs after water flooding.The suitable measurements of EOR to the OLOSRs probably have a profound impact on achieving higher oilfield reserves and production.In this paper,the main characteristics and reserves potential of OLOSRs have been studied by investigations and laboratory experiments.The relationship between initial oil saturation and displacement efficiency is also analyzed.The feasibility of EOR technologies for different OLOSRs is discussed.The results show that the OLOSRs could be divided into two categories(primary and secondary)by origin of low oil saturation.The two categories contain abundant reserves in China’s major oilfields,but their occurrence states of crude oil are quite different.If the average oil saturation of the OLOSR is defined at 40%,there are 13.1%-54.2%crude oil that could be recovered by using the existing EOR technology,especially in the primary OLOSRs with low permeability and the secondary OLOSRs with high permeability.