期刊文献+
共找到4,861篇文章
< 1 2 244 >
每页显示 20 50 100
Synergistic anionic/zwitterionic mixed surfactant system with high emulsification efficiency for enhanced oil recovery in low permeability reservoirs 被引量:2
1
作者 Hai-Rong Wu Rong Tan +6 位作者 Shi-Ping Hong Qiong Zhou Bang-Yu Liu Jia-Wei Chang Tian-Fang Luan Ning Kang Ji-Rui Hou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期936-950,共15页
Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant... Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs. 展开更多
关键词 Anionic/zwitterionic mixed surfactant system EMULSIFICATION Synergistic effect Low permeability reservoir Enhanced oil recovery
下载PDF
Recent advances in switchable surfactants for heavy oil production:A review
2
作者 Qi Li Lingfei Liu +1 位作者 Dejun Sun Zhenghe Xu 《Energy Geoscience》 EI 2024年第4期75-88,共14页
Surfactants are extensively employed in the cold production of heavy oil.However,producing heavy oil emulsions using conventional surfactants poses a challenge to spontaneous demulsification,necessitating the addition... Surfactants are extensively employed in the cold production of heavy oil.However,producing heavy oil emulsions using conventional surfactants poses a challenge to spontaneous demulsification,necessitating the addition of demulsifiers for oil-water separation.This inevitably increases the exploitation cost and environmental pollution risk.Switchable surfactants have garnered much attention due to their dual capabilities of underground heavy oil emulsification and surface demulsification.This study focuses on the fundamental working principles and classification of novel switchable surfactants for oil displacement developed in recent years.It offers a comprehensive overview of the latest advances in the applications of switchable surfactants in the fields of enhanced oil recovery(EOR),oil sand washing,and oil-water separation.Furthermore,it highlights the existing challenges and future development directions of switchable surfactants for heavy oil recovery. 展开更多
关键词 Heavy oil Switchable surfactant Cold production EMULSIFICATION DEMULSIFICATION
下载PDF
Surfactant-coated Candida rugosa Lipase as Catalyst for Hydrolysis of Olive Oil in Solvent-Free Two-Phase System
3
作者 宋宝东 丁辉 +3 位作者 吴金川 Hayashi Y. Talukder MMR 王世昌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第5期601-603,共3页
The surfactant-coated Candida rugosa lipase was used as catalyst for hydrolysis of olive oil in two-phase system consisting of olive oil and phosphate buffer without organic solvent. For both the coated and native lip... The surfactant-coated Candida rugosa lipase was used as catalyst for hydrolysis of olive oil in two-phase system consisting of olive oil and phosphate buffer without organic solvent. For both the coated and native lipases,the optimal buffer/oil volume ratio of 1.0, aqueous pH 6.8 and reaction temperature 30℃ were determined. The maximum activity of the coated lipase was ca 1.3 times than that of the native lipase. The half-life of the coated lipase in olive oil and the native lipase in phosphate buffer was ca 9 h and 12 h, and the final residual activity was 27% and 20% of their initial values, respectively. The final substrate conversion by the coated lipase was ca 20% higher than that of the native lipase. 展开更多
关键词 Candida rugosa HYDROLYSIS LIPASE olive oil solvent-free system surfactant
下载PDF
Effect of Addition of Cosurfactant on the Phase Behaviour of Oil-in-water Aminosilicone Oil Microemulsion
4
作者 ZhengHongLUO XiaoLiZHAN PengYongYU 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第9期1101-1104,共4页
Stable and transparent aminosilicone oil microemulsion of the average particle size below 0.05 micron was prepared. The interaction of the aminosilicone oil, water, complex surfactants and cosurfactant was studied by... Stable and transparent aminosilicone oil microemulsion of the average particle size below 0.05 micron was prepared. The interaction of the aminosilicone oil, water, complex surfactants and cosurfactant was studied by part pseudoternary phase diagram. The effect of cosurfactants (such as alcohol) and the mechanism of its effect on the phase behaviour of the pseudoternary system were investigated. 展开更多
关键词 Aminosilicone oil microemulsion cosurfactant phase diagram.
下载PDF
Temperature Dependent Phase Behavior of Pseudo-Ternary Thiourea X-100 Surfactant +1-Hexanol/Oil/Water Systems
5
作者 Mohd Zul Helmi Rozaini 《Open Journal of Physical Chemistry》 2012年第3期169-175,共7页
Temperature dependent phase behavior of Pseudo-ternary Thiourea X-100 + 1-hexanol (1:5 molar ratios)/oil/water systems is reported. The influence of nature of hydrocarbon oil and type of electrolytes (weak as well as ... Temperature dependent phase behavior of Pseudo-ternary Thiourea X-100 + 1-hexanol (1:5 molar ratios)/oil/water systems is reported. The influence of nature of hydrocarbon oil and type of electrolytes (weak as well as strong) has been investigated on the temperature induced phase behavior of the ternary system. At surfactant concentration, Φs = 40%, a “nose shaped” microemulsion region is observed. Below one-phase microemulsion region, Lα phase appears. The presence of NaCl decreases the domain size of 1Φ micellar region whereas oxalic acid first decreases the domain below Φw 18 in the lower boundry of the phase diagram. The critical weight fraction of water, Φwcri decreases in presence of both electrolytes. However, Φwmax increases in presence of oxalic acid and remains constant in presence of NaCl as compared to salt free system. Furthermore, when cyclohexane was replaced by a longer straight chain hydrocarbon, dodecane, the domain of the one-phase microemulsion region is tremendously increased. 展开更多
关键词 surfactant AMPHIPHILE CO-surfactant Microemulsion Micelles Reverse Micelles phase Behavior phase Diagram THIOUREA X-100 1-Hexanol
下载PDF
Review of surfactant-assisted chemical enhanced oil recovery for carbonate reservoirs: challenges and future perspectives 被引量:20
6
作者 Sreela Pal M.Mushtaq +1 位作者 Fawzi Banat Ali M.Al Sumaiti 《Petroleum Science》 SCIE CAS CSCD 2018年第1期77-102,共26页
A significant fraction of the conventional oil reserves globally is in carbonate formations which contain a substantial amount of residual oil. Since primary and secondary recovery methods fail to yield above 20%-40%o... A significant fraction of the conventional oil reserves globally is in carbonate formations which contain a substantial amount of residual oil. Since primary and secondary recovery methods fail to yield above 20%-40%of original oil in place from these reserves, the need for enhanced oil recovery(EOR) techniques for incremental oil recovery has become imperative. With the challenges presented by the highly heterogeneous carbonate rocks,evaluation of tertiary-stage recovery techniques including chemical EOR(c EOR) has been a high priority for researchers and oil producers. In this review, the latest developments in the surfactant-based c EOR techniques applied in carbonate formations are discussed, contemplating the future direction of existing methodologies. In connection with this, the characteristics of heterogeneous carbonate reservoirs are outlined. Detailed discussion on surfactant-led oil recovery mechanisms and related processes, such as wettability alteration, interfacial tension reduction, microemulsion phase behavior, surfactant adsorption and mitigation, and foams and their applications is presented. Laboratory experiments, as well as field study data obtained using several surfactants, are also included.This extensive discussion on the subject aims to help researchers and professionals in the field to understand the current situation and plan future enterprises accordingly. 展开更多
关键词 oil reserves Original oil in place Carbonateformations surfactantS Chemical enhanced oil recovery
下载PDF
Surfactant induced reservoir wettability alteration:Recent theoretical and experimental advances in enhanced oil recovery 被引量:16
7
作者 Wang Yefei XU Huaimin +3 位作者 Yu Weizhao Bai Baojun Song Xinwang Zhang Jichao 《Petroleum Science》 SCIE CAS CSCD 2011年第4期463-476,共14页
Reservoir wettability plays an important role in various oil recovery processes.The origin and evolution of reservoir wettability were critically reviewed to better understand the complexity of wettability due to inte... Reservoir wettability plays an important role in various oil recovery processes.The origin and evolution of reservoir wettability were critically reviewed to better understand the complexity of wettability due to interactions in crude oil-brine-rock system,with introduction of different wetting states and their influence on fluid distribution in pore spaces.The effect of wettability on oil recovery of waterflooding was then summarized from past and recent research to emphasize the importance of wettability in oil displacement by brine.The mechanism of wettability alteration by different surfactants in both carbonate and sandstone reservoirs was analyzed,concerning their distinct surface chemistry,and different interaction patterns of surfactants with components on rock surface.Other concerns such as the combined effect of wettability alteration and interfacial tension (IFT) reduction on the imbibition process was also taken into account.Generally,surfactant induced wettability alteration for enhanced oil recovery is still in the stage of laboratory investigation.The successful application of this technique relies on a comprehensive survey of target reservoir conditions,and could be expected especially in low permeability fractured reservoirs and forced imbibition process. 展开更多
关键词 Wettability alteration RESERVOIR enhanced oil recovery (EOR) surfactant
下载PDF
Influence of surfactants used in surfactant-polymer flooding on the stability of Gudong crude oil emulsion 被引量:12
8
作者 Dong Zhaoxia Lin Meiqin Wang Hao Li Mingyuan 《Petroleum Science》 SCIE CAS CSCD 2010年第2期263-267,共5页
The influences of an anionic-nonionic composite surfactant and petroleum sulfonate, used in surfactant-polymer flooding in Shengli Gudong oilfield, East China, on the interfacial properties of Gudong crude model oil a... The influences of an anionic-nonionic composite surfactant and petroleum sulfonate, used in surfactant-polymer flooding in Shengli Gudong oilfield, East China, on the interfacial properties of Gudong crude model oil and synthetic formation water was studied by measuring interfacial tension, interfacial viscoelasticity and Zeta potential. The in? uence of the surfactants on the stability of Gudong water-in-oil (W/O) and oil-in-water (O/W) emulsions was evaluated by separating water from the W/O emulsion and residual oil in the aqueous phase of the O/W emulsion respectively. The results showed that the two kinds of surfactants, namely anionic-nonionic composite surfactant and petroleum sulfonate, are both able to decrease the interfacial tension between the oil phase and the aqueous phase and increase the surface potential of the oil droplets dispersed in the O/W emulsion, which can enhance the stability of the W/O and O/W crude oil emulsions. Compared with petroleum sulfonate, the anionic-nonionic composite surfactant is more interfacially active and able to enhance the strength of the interfacial film between oil and water, hence enhance the stability of the W/O and O/W emulsions more effectively. 展开更多
关键词 surfactant Gudong crude oil interfacial properties EMULSION stability
下载PDF
Enhancement of the imbibition recovery by surfactants in tight oil reservoirs 被引量:9
9
作者 Zhan Meng Sheng-Lai Yang +6 位作者 Yan Cui Zi-Yao Zhong Cheng-Gang Liang Lu Wang Kun Qian Quan-Zheng Ma Jun-Ru Wang 《Petroleum Science》 SCIE CAS CSCD 2018年第4期783-793,共11页
Hydraulic fracturing technology can significantly increase oil production from tight oil formations, but performance data show that production declines rapidly. In the long term, it is necessary to increase the develo... Hydraulic fracturing technology can significantly increase oil production from tight oil formations, but performance data show that production declines rapidly. In the long term, it is necessary to increase the development efficiency of block matrix, surfactant-aided imbibition is a potential way. The current work aimed to explain comprehensively how surfactants can enhance the imbibition rate. Laboratory experiments were performed to investigate the effects of wettability, interfacial tension(IFT), and relative permeability as the key parameters underlying surfactant solution imbibition. Two different types of surfactants, sodium dodecyl sulfate and polyethylene glycol octylphenol ether, at varied concentrations were tested on reservoir rocks. Experimental results showed that the oil recovery rate increased with increased wettability alteration and IFT and decreased residual oil saturation. A mechanistic simulator developed in previous studies was used to perform parametric analysis after successful laboratory-scale validation. Results were proven by parametric studies. This study,which examined the mechanism and factors influencing surfactant solution imbibition, can improve understanding of surfactant-aided imbibition and surfactant screening. 展开更多
关键词 Spontaneous imbibition Tight oil reservoir surfactantS Wettability alteration Enhanced oil recovery
下载PDF
Enhanced oil recovery by nonionic surfactants considering micellization, surface, and foaming properties 被引量:8
10
作者 Achinta Bera Ajay Mandal +1 位作者 Hadi Belhaj Tarkeswar Kumar 《Petroleum Science》 SCIE CAS CSCD 2017年第2期362-371,共10页
Surfactants for enhanced oil recovery are important to study due to their special characteristics like foam generation,lowering interfacial tension between oleic and aqueous phases,and wettability alteration of reserv... Surfactants for enhanced oil recovery are important to study due to their special characteristics like foam generation,lowering interfacial tension between oleic and aqueous phases,and wettability alteration of reservoir rock surfaces.Foam is a good mobility control agent in enhanced oil recovery for improving the mobility ratio.In the present work,the foaming behavior of three nonionic ethoxylated surfactants,namely Tergitol 15-S-7,Tergitol 15-S-9,and Tergitol 15-S-12,was studied experimentally.Among the surfactants,Tergitol 15-S-12 shows the highest foamability.The effect of Na Cl concentration and synthetic seawater on foaming behavior of the surfactants was investigated by the test-tube shaking method.The critical micelle concentrations of aqueous solutions of the different nonionic surfactants were measured at 300 K.It was found that the critical micelle concentrations of all surfactants also increased with increasing ethylene oxide number.Dynamic light scattering experiments were performed to investigate the micelle sizes of the surfactants at their respective critical micelle concentrations.Core flooding experiments were carried out in sand packs using the surfactant solutions.It was found tha t22% additional oil was recovered in the case of all the surfactants over secondary water flooding.Tergitol 15-S-12exhibited the maximum additional oil recovery which is more than 26%after water injection. 展开更多
关键词 Enhanced oil recovery Ethylene oxide number Foaming properties surfactant flooding Micellization
下载PDF
Synthesis of temperature-resistant and salttolerant surfactant SDB-7 and its performance evaluation for Tahe Oilfield flooding (China) 被引量:4
11
作者 Guo Jixiang Shi Xiao +3 位作者 Yang Zuguo Cao Jingjing Wang Lei Yin Ying 《Petroleum Science》 SCIE CAS CSCD 2014年第4期584-589,共6页
In order to improve the enhanced oil recovery of high-temperature and high-salt oilfields, a novel temperature-resistant and salt-tolerant surfactant (denoted as SDB-7) was synthesized and evaluated for the Tahe Oil... In order to improve the enhanced oil recovery of high-temperature and high-salt oilfields, a novel temperature-resistant and salt-tolerant surfactant (denoted as SDB-7) was synthesized and evaluated for the Tahe Oilfield (Xinjiang, China), which is representative of high-temperature and high-salt oilfields. It has a central reservoir temperature of 140 ℃ and salinity of 22.6× 10^4 mg/L. The temperature-resistant and salt-tolerant performance, interfacial activity, oil displacement efficiency, aging properties, and adsorption properties of the synthesized surfactant were evaluated for Tahe Oilfield flooding. The results showed that the SDB-7 was temperature-resistant and salt-tolerant capacity of 140 ℃ and 22.6×10^4 rag/ L, respectively, oil displacement efficiency under static condition of 84%, and adsorption loss of 0.4 mg/ g (less than 1 mg/g-oil sand). In the heat aging experiment (under the temperature of 140 ℃ for 60 days), the oil-water interracial tension and oil displacement efficiency of SDB-7 were almost unchanged. The oil displacement experiments showed that, under the temperature of 140 ℃ and the salinity of 22.6× 10^4 mg/L, the surfactant SDB-7 can enhance oil recovery by 14.5% after water flooding,suggesting that SDB-7 has a promising application in high temperature and high salinity (HT/HS) reservoir. 展开更多
关键词 Temperature-resistance SALT-TOLERANCE surfactant oil displacement experiments EOR
下载PDF
Experimental study on the mechanism of adsorption-improved imbibition in oil-wet tight sandstone by a nonionic surfactant for enhanced oil recovery 被引量:5
12
作者 Yong-Peng Sun Yan Xin +1 位作者 Fang-Tao Lyu Cai-Li Dai 《Petroleum Science》 SCIE CAS CSCD 2021年第4期1115-1126,共12页
In recent years,production from tight oil reservoirs has increasingly supplemented production from conventional oil resources.Oil-wet formations account for a considerable proportion of tight oil reservoirs.Surfactant... In recent years,production from tight oil reservoirs has increasingly supplemented production from conventional oil resources.Oil-wet formations account for a considerable proportion of tight oil reservoirs.Surfactant can change wettability and reduce interfacial tension,thus resulting in a better oil recovery.In this manuscript,a nonionic surfactant was introduced for tight oil-wet reservoirs.The oil recovery in the oil-wet sandstone due to spontaneous imbibition was 8.59%lower than that of the waterwet sandstone due to surfactant.The 0.1%surfactant solution corresponded to the highest imbibition recovery rate of 27.02%from the oil-wet sample.With the surfactant treatment,the treated core quickly changed from weakly oil-wet to weakly water-wet.The capillary force acted as the driving force and promoted imbibition.The optimal surfactant adsorption quantity in the oil-wet sandstone was observed in the sample at concentrations ranging from 0.1%to 0.3%,which also corresponded to the highest oil recovery.Analysis of the inverse Bond number NB-1 suggested that the driving force was gravity for brine imbibition in the oil-wet cores and that it was capillary force for surfactant imbibition in the oil-wet cores.When the surfactant concentration was lower than the critical micelle concentration,the surfactant concentration was negatively correlated with the inverse Bond number and positively correlated with the oil recovery rate.When the surfactant concentration was higher than the critical micelle concentration,the oil recovery increased with a smaller interfacial tension.Nuclear magnetic resonance suggested that the movable pore and pore throat size in the oil-wet sample decreased from 0.363 mm in the untreated rock to 0.326 mm with the surfactant treatment,which indicated that the surfactant improved the flow capacity of the oil.The findings of this study can help to better understand the adsorption impact of surfactants on the characteristics of the oil/water and solid/liquid interfaces.The imbibition mechanism in oil-wet tight sandstone reservoirs was further revealed.These systematic approaches help to select appropriate surfactants for better recovery in oil-wet tight sandstone reservoirs through imbibition. 展开更多
关键词 Tight oil reservoir ADSORPTION Enhanced oil recovery surfactant WETTABILITY Interfacial tension
下载PDF
Temperature effect on performance of nanoparticle/surfactant flooding in enhanced heavy oil recovery 被引量:4
13
作者 Sajjad Mahmoudi Arezou Jafari Soheila Javadian 《Petroleum Science》 SCIE CAS CSCD 2019年第6期1387-1402,共16页
Recently,nanoparticles have been used along with surfactants for enhancing oil recovery.Although the recent studies show that oil recovery is enhanced using nanoparticle/surfactant solutions,some effective parameters ... Recently,nanoparticles have been used along with surfactants for enhancing oil recovery.Although the recent studies show that oil recovery is enhanced using nanoparticle/surfactant solutions,some effective parameters and mechanisms involved in the oil recovery have not yet been investigated.Therefore,the temperature effect on the stability of nanoparticle/surfactant solutions and ultimate oil recovery has been studied in this work,and the optimal concentrations of both SiO2 nanoparticle and surfactant(sodium dodecyl sulfate)have been determined by the Central Composite Design method.In addition,the simultaneous effects of parameters and their interactions have been investigated.Study of the stability of the injected solutions indicates that the nanoparticle concentration is the most important factor affecting the solution stability.The surfactant makes the solution more stable if used in appropriate concentrations below the CMC.According to the micromodel flooding results,the most effective factor for enhancing oil recovery is temperature compared to the nanoparticle and surfactant concentrations.Therefore,in floodings with higher porous medium temperature,the oil viscosity reduction is considerable,and more oil is recovered.In addition,the surfactant concentration plays a more effective role in reservoirs with higher temperatures.In other words,at a surfactant concentration of 250 ppm,the ultimate oil recovery is improved about 20%with a temperature increase of 20°C.However,when the surfactant concentration is equal to 750 ppm,the temperature increase enhances the ultimate oil recovery by only about 7%.Finally,the nanoparticle and surfactant optimum concentrations determined by Design-Expert software were equal to 46 and 159 ppm,respectively.It is worthy to note that obtained results are validated by the confirmation test. 展开更多
关键词 Enhanced heavy oil recovery NANOPARTICLE surfactant TEMPERATURE High salinity brine Stability MICROMODEL Experimental design
下载PDF
A review of fluid displacement mechanisms in surfactant-based chemical enhanced oil recovery processes:Analyses of key influencing factors 被引量:7
14
作者 Ahmed Bashir Amin Sharifi Haddad Roozbeh Rafati 《Petroleum Science》 SCIE CAS CSCD 2022年第3期1211-1235,共25页
Surfactant-based oil recovery processes are employed to lower the interfacial tension in immiscible displacement processes,change the wettability of rock to a more water-wet system and emulsify the oil to displace it ... Surfactant-based oil recovery processes are employed to lower the interfacial tension in immiscible displacement processes,change the wettability of rock to a more water-wet system and emulsify the oil to displace it in subsurface porous media.Furthermore,these phenomena can reduce the capillary pressure and enhance spontaneous imbibition.The key factors affecting such immiscible displacement process are temperature,salinity and p H of the fluids,surfactant concentration and adsorption.Therefore,before any surfactant flooding process is applied,extensive studies of fluid-fluid and rock-fluid interactions are needed.The use of other chemicals along with surfactants in chemical enhanced oil recovery(c EOR)processes have been widely considered to exploit the synergy of individual chemicals and complement the weakness arises from each of them during immiscible displacement of fluids in porous media.Therefore,such combinations of chemicals lead to alkaline-surfactant(AS),surfactantpolymer(SP),alkaline-surfactant-polymer(ASP),and nanoparticle-surfactant(NS)flooding processes,among others.In this review study,we categorised the role and displacement mechanisms of surfactants and discussed the key factors to be considered for analysing the fluid displacement in porous media. 展开更多
关键词 Alkaline surfactant(AS)flooding Alkaline-surfactant-polymer(ASP)flooding Enhanced oil recovery(EOR) Interfacial tension(IFT) Nanoparticle-surfactant(NS)flooding surfactant adsorption surfactant-polymer(SP)flooding Wettability alteration
下载PDF
Temperature-resistant and salt-tolerant mixed surfactant system for EOR in the Tahe Oilfield 被引量:3
15
作者 Ji-Xiang Guo Shi-Ling Zhang +4 位作者 Yu-Qi Yang Zi-Jing Yu Liang Li Yu-Shan Wang Long-Sheng Zhang 《Petroleum Science》 SCIE CAS CSCD 2021年第2期667-678,共12页
A new temperature-resistant and salt-tolerant mixed surfactant system(referred to as the SS system)for enhancing oil recovery at the Tahe Oilfield(Xinjiang,China)was evaluated.Based on the analysis of the crude oil,th... A new temperature-resistant and salt-tolerant mixed surfactant system(referred to as the SS system)for enhancing oil recovery at the Tahe Oilfield(Xinjiang,China)was evaluated.Based on the analysis of the crude oil,the formation water and rock components in the Tahe Oilfield,the long-term thermal stability,salt tolerance and the ability to change the wettability,interfacial activity and oil washing efficiency of the mixed surfactant system were studied.The system contains the anionic surfactant SDB and another cationic surfactant SDY.When the total mass concentration of the SS solution is 0.15 wt%,m(SDB)/m(SDY)ratio is 1 to 1,and excellent efficiencies are achieved for oil washing for five kinds of Tahe Oilfield crude oils(more than 60%).In addition,after adding cationic surfactant,the adsorption capacity of the surfactant is further reduced,reaching 0.261 mg/g.The oil displacement experiments indicate that under a temperature of 150°C and a salinity of 24.6×104 mg/L,the SS system enhances the oil recovery by over 10%after water flooding.The SS anionic–cationic surfactant system is first presented in the open literature that can be successfully applied to obtain predictions of Tahe Oilfield carbonate reservoirs with a high temperature and high salinity. 展开更多
关键词 Mixed surfactant system Temperature resistance Salt tolerance Carbonate reservoir Enhanced oil recovery
下载PDF
New insights into the mechanism of surfactant enhanced oil recovery:Micellar solubilization and in-situ emulsification 被引量:2
16
作者 Xue-Zhi Zhao Guang-Zhi Liao +5 位作者 Ling-Yan Gong Huo-Xin Luan Quan-Sheng Chen Wei-Dong Liu Dong Liu Yu-Jun Feng 《Petroleum Science》 SCIE CAS CSCD 2022年第2期870-881,共12页
Reducing the oil-water interfacial tension(IFT)to ultra-low is believed the primary mechanism for surfactant-based enhanced oil recovery(EOR)process.However,field trials have shown that low concentration surfactant fl... Reducing the oil-water interfacial tension(IFT)to ultra-low is believed the primary mechanism for surfactant-based enhanced oil recovery(EOR)process.However,field trials have shown that low concentration surfactant flooding can also improve oil recovery without ultra-low IFT.To clarify the mechanism behind,the currently-used surfactant,naphthenic arylsulfonate(NAS),was used to unravel its function during surfactant flooding from the horizon of micron-and nano-scale.The solubilization capacity of NAS micelle to petroleum fractions was evaluated through light absorbance strategy,smallangle neutron scattering,dynamic light scattering and transmission electron microscopy.It was found that micellar solubilization plays a significant role during the surfactant flooding.In-situ emulsification was visualized in microfluidics with three types of microchips,respectively.A series of displacement tests were carried out with NAS solution pumping into oil-saturated chip.The results show that in-situ emulsification improve oil recovery mainly through blocking and entrainment effects.Results from this work aid in understanding the interaction between surfactant solution and petroleum fractions at low surfactant concentration,which is helpful for design surfactant-based displacing system for EOR process. 展开更多
关键词 Enhanced oil recovery surfactant flooding Micellar solubilization MICROFLUIDICS In-situ emulsification
下载PDF
Effects of pore structure on surfactant/polymer floodingbased enhanced oil recovery in conglomerate reservoirs 被引量:2
17
作者 LIU Zheyu LI Yiqiang +3 位作者 LENG Runxi LIU Zhenping CHEN Xin HEJAZI Hossein 《Petroleum Exploration and Development》 2020年第1期134-145,共12页
To understand the displacement characteristics and remaining oil displacement process by the surfactant/polymer(SP) flooding in cores with different pore structures, the effects of pore structure on the enhanced oil r... To understand the displacement characteristics and remaining oil displacement process by the surfactant/polymer(SP) flooding in cores with different pore structures, the effects of pore structure on the enhanced oil recovery of SP flooding was investigated at the pore, core and field scales through conducting experiments on natural core samples with three typical types of pore structures. First, the in-situ nuclear magnetic resonance core flooding test was carried out to capture the remaining oil variation features in the water flooding and SP flooding through these three types of cores. Subsequently, at the core scale, displacement characteristics and performances of water flooding and SP flooding in these three types of cores were evaluated based on the full-size core flooding tests. Finally, at the field scale, production characteristics of SP flooding in the bimodal sandstone reservoir and multimodal conglomerate reservoir were compared using the actual field production data. The results show: as the pore structure gets more and more complex, the water flooding performance gets poorer, but the incremental recovery factor by SP flooding gets higher;the SP flooding can enhance the producing degree of oil in 1-3 μm pores in the unimodal and bimodal core samples, while it produces largely oil in medium and large pores more than 3 μm in pore radius in the multimodal core sample. The core flooding test using full-size core sample demonstrates that the injection of SP solution can significantly raise up the displacement pressure of the multimodal core sample, and greatly enhance recovery factor by emulsifying the remaining oil and enlarging swept volume. Compared with the sandstone reservoir, the multimodal conglomerate reservoir is more prone to channeling. With proper profile control treatments to efficiently enlarge the microscopic and macroscopic swept volumes, SP flooding in the conglomerate reservoir can contribute to lower water cuts and longer effective durations. 展开更多
关键词 CONGLOMERATE RESERVOIR PORE structure surfactant/polymer FLOODING DISPLACEMENT effect oil recovery enhancement
下载PDF
Features and imbibition mechanisms of Winsor Ⅰ type surfactant solution in oil-wet porous media 被引量:2
18
作者 YU Fuwei JIANG Hanqiao +5 位作者 FAN Zhen XU Fei SU Hang CHENG Baoyang LIU Rengjing LI Junjian 《Petroleum Exploration and Development》 2019年第5期1006-1013,共8页
The relationship between NaCl concentration and the phase change behavior of microemulsion of anionic surfactant was characterized by the salinity scan experiments.The wettability of WinsorⅠtype surfactant solution(W... The relationship between NaCl concentration and the phase change behavior of microemulsion of anionic surfactant was characterized by the salinity scan experiments.The wettability of WinsorⅠtype surfactant solution(WⅠsolution)and the effect of NaCL concentration on phase change behavior of WⅠsolution and imbibition in oil-wet porous media were investigated by microfluidic experiments in this study.The WⅠsolution and WinsorⅠtype microemulsion are similar in wetting phase with stronger wettability than other phases.Two main mechanisms of WⅠsolution enhancing imbibitions recovery in oil wet porous media are the wetting phase drive and residual oil solubilization.Under the salinity condition of WinsorⅠtype microemulsion,the NaCl concentration has strong impact on the imbibition mechanism of WⅠsolution,the higher the NaCl concentration,the complex the imbibition process and the higher the imbibition efficiency will be.The NaCl concentration has strong impact on the solubilization ability to oil of the WⅠsolution,the higher the NaCl concentration,the stronger the solubility of the WⅠsolution to residual oil will be. 展开更多
关键词 porous media WETTABILITY WinsorⅠtype surfactant IMBIBITION mechanism enhanced oil recovery
下载PDF
Surfactant-Enhanced Washing of Soils Contaminated with Wasted-Automotive Oils and the Quality of the Produced Wastewater 被引量:1
19
作者 Montserrat Zacarias-Salinas Mabel Vaca +2 位作者 Miguel A. Flores Erick R. Bandala Luis G. Torres 《Journal of Environmental Protection》 2013年第12期1495-1501,共7页
An old automotive industrial site located at Mexico City with many years of operation and contaminated with heavy oil hydrocarbons, particularly spent oils, was assessed for restoration using the surfactant enhanced s... An old automotive industrial site located at Mexico City with many years of operation and contaminated with heavy oil hydrocarbons, particularly spent oils, was assessed for restoration using the surfactant enhanced soil washing (SESW) process. The main goal of this study was to characterize the contaminated soil in terms of TPHs, BTEX, PAHs, and metals contents as well as microbiologically (total heterotrophs and specific degrading microorganisms). We also aimed to determine the surfactant type and concentration to be used in the SESW process for the automotive waste oil contaminated soil. At the end, sixteen kg of contaminated soil were washed and the produced wastewater (approximately 40 L) was characterized in terms of COD, BOD;solids, and other physico-chemical parameters. The soil contained about 14,000 mg of TPH/kg soil (heavy fraction), 0.13 mg/kg of benzo (k) fluoranthene and 0.07 mg/kg of benzo (a) pyrene as well as traces of some metals. Metals concentrations were always under the maximum concentration levels suggested by Mexican regulations. 15 different surfactants were used to identify the one with the capability to achieve the highest TPH removal. Surfactants included 5 anionics, 2 zwitterionic, 5 nonionics and 3 natural gums. Sulfopon 30 at a concentration of 0.5% offered the best surfactant performance. The TPH removals employing the different surfactants were in the range from 38% to 68%, in comparison to the soil washing with water (10% of TPH removal). Once the surfactant was selected, 70 kg of soil were washed and the resulting water contained approximately 1300 mg/L of COD, 385 mg/L of BOD (BOD/COD = 0.29), 122 mg/L of MBAS, and 212 mg/L of oil and greases, among other contaminants. 展开更多
关键词 Wasted Automotive oilS surfactantS Soil WASHING Waste Water
下载PDF
Surface-functionalized cellulose nanocrystals(CNC)and synergisms with surfactant for enhanced oil recovery in low-permeability reservoirs 被引量:1
20
作者 Zhe Li Wan-Li Kang +6 位作者 Meng-Lan Li Hong-Bin Yang Tong-Yu Zhu Ying-Qi He Hai-Zhuang jang Bo-Bo Zhou Ji-Ting Hao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1572-1583,共12页
Nanocellulose,a natural polymeric nanomaterial,has attracted significant attention in enhanced oil recovery(EOR)applications due to its abundance,nanoscale,high oil-water interfacial adsorption ef-ficiency.In this stu... Nanocellulose,a natural polymeric nanomaterial,has attracted significant attention in enhanced oil recovery(EOR)applications due to its abundance,nanoscale,high oil-water interfacial adsorption ef-ficiency.In this study,surface-functionalized cellulose nanocrystals(SF-CNCs)were prepared via hy-drochloric acid hydrolysis and chemical modification,with adaptable nanosize and considerable dispersion stability in low-permeability reservoirs.The SF-CNCs were structurally characterized by FT-IR,Cryo-TEM,which have a diameter of 5-10 nm and a length of 100-200 nm.The SF-CNC dispersions possessed higher stability and stronger salt-tolerance than those of corresponding CNC dispersions,due to the strong hydrophilicity of the sulfonic acid group.It was synergistically used with a non-ionic surfactant(APG1214)to formulate a combined flooding system(0.1 wt%SF-CNC+0.2 wt%APG1214).The combined flooding system exhibits strong emulsification stability,low oil-water interfacial tension of o.03 mN/m,and the ability to alter the wettability for oil-wetting rocks.Furthermore,the combined system was_able to provide an optimum EOR efficiency of 20.2%in low-permeability cores with 30.13×10^(-3)μm^(2).Notably.it can enlarge the sweep volume and increase the displacement efficiency simultaneously.Overall,the newly formulated nanocellulose/surfactant combined system exhibits a remarkable EoR performance in low-permeability reservoirs. 展开更多
关键词 Low-permeability reservoirs Enhanced oil recovery Cellulose nanocrystals(CNC) surfactant Dispersion stability
下载PDF
上一页 1 2 244 下一页 到第
使用帮助 返回顶部